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Abstract

The use of observational methods remains common in program evaluation. How much
should we trust these studies, which lack clear identifying variation? We propose adjusting
confidence intervals to incorporate the uncertainty due to observational bias. Using data
from 53 development RCTs with imperfect compliance (ICRCTs), we estimate the parameters
required to construct our confidence intervals, and illustrate their use. Our confidence intervals
allow observational estimates to be used even when there are doubts about identification,
have close to nominal coverage, lead to power gains in meta-analysis, and enable researchers
to choose between RCT and observational methods based on power. A key takeaway of
our findings is that observational methods have significantly lower power than suggested by
conventional confidence intervals.
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1 Introduction

The past decades have seen large advances in quasi-experimental program evaluation, and a
rise in the use of Randomized Controlled Trials (RCTs) (Angrist and Pischke 2010; Duflo et al.
2007). Despite this, observational studies remain popular, likely reflecting the difficulty of finding
naturally-occurring exogenous variation, and the high perceived logistical and monetary cost of
RCTs.! How much should we trust these studies, which lack clear identifying variation, how can
they be made more useful for those who worry about the biases they may contain, and how can a
researcher decide when it is worth paying the cost of running an RCT?

We address these questions by estimating the distribution of observational bias, and using those
estimates to provide bias corrected confidence intervals for observational estimates. We further
establish consistency of the proposed confidence intervals. Our confidence intervals increase the
usefulness of observational studies by: 1) providing a quantitative estimate of their uncertainty
and allowing them to be used even when there are doubts about identification; and 2) allowing
them to be combined with RCT estimates in meta-analyses, adding to power. Our approach also
allows a researcher to decide between an RCT and observational study using power calculations.
Our proposal moves beyond the influential approach of LaLonde (1986), which has shown that
observational studies can be biased, and allows a researcher to use an observational estimate,
while being clear about its limitations.

Our analysis is restricted to observational methods that leverage a cross section of data. To
motivate our confidence intervals, consider a policy maker who has access to a large observational

data set that includes variation in uptake of a program that they wish to evaluate. With the data

—_ B
they are able to generate an observational estimate, TOT , of the average treatment effect on the
treated, with a standard error 0.2 We show that if this policy maker believes that the observational
bias of their estimate is drawn from a Normal distribution with mean p and standard deviation T,

then an appropriate two-sided confidence interval of size § would be

——OBS 1 )
TOT ~—j+®! <J2r> 02+ 02+ 12, (1)

where fi and T are empirical counterparts for y and 7, and 7, is the standard error of /.

This formula incorporates uncertainty about observational bias directly into a standard rep-
resentation of parameter uncertainty, and helps clarify what we need to estimate and how our
confidence intervals behave. First, in addition to the usual estimates, our policy maker requires
estimates {71, ?Tﬁ, %2} of {u, Uﬁ, 72} (the mean observational bias, its standard error, and the true
variability in observational bias). We can think of the square root term in (1) as an effective standard

error that incorporates uncertainty about observational bias. Second, mean bias is not really a

I Appendix Figure D.1 shows the continued popularity of matching methods, a leading observational method, and
the recent rapid growth of double debiased machine learning.

2We assume throughout that TOT is the object of policy interest as it is the parameter most obviously identified in
an observational study.



problem. If i is known with precision (e.g., if ﬁOBS is known to have a specific positive bias), it
can easily be adjusted for. It is uncertainty in the estimate of u (frﬁ), and fundamental variation
in observational bias (72), that matter. This is the key area in which our work differs from the
seminal paper of LaLonde (1986) and the literature that followed. That literature shows that
observational estimates can sometimes be adjusted to recover a related experimental estimate, but
that this is not always the case, and gives no guidance about when this will work or how to use
observational estimates in general, given this uncertainty.?

Third, efforts to increase the precision of observational estimates may be better focused on
reducing uncertainty about bias than increasing sample size to reduce 2. In this sense, studies like
ours that seek to increase understanding of observational bias can improve all future observational
studies. Fourth, even with an infinite-sized observational study (so 62 vanishes) uncertainty
does not disappear: 72 will remain and represents the uncertainty about identification that we
tend to discuss in seminars and referee reports. Indeed, in large samples, uncertainty from
observational bias dominates the effective standard error, meaning observational bias becomes
especially important for large studies that attempt to discover small effects, a fact that seems
particularly important with the increased availability of very large observational data sets.

To estimate our three new objects ({f1, &5, f'Z}) we proceed as follows. First, we build a new
dataset containing micro data from a large number of randomized controlled trials with imperfect
compliance (ICRCTs). The dataset was created using the Dataverses of the Abdul Latif Jameel
Poverty Action Lab (J-PAL) and Innovations for Poverty Action (IPA), and yields 53 different trials,
with an average of about 48 potentially-biased parameter estimates per trial. These pioneering
organizations have spearheaded the movement to evaluate development policy using RCTs, and
their advocacy and hard work is what allows for our approach. The key assumption of our paper,
and one that we discuss and defend throughout, is exchangeability: given the information available
to them, the policy maker would be willing to exchange estimates of bias from one of the studies
with estimates from any of the others.* This assumption is common in the literature, especially in
the literature seeking to estimate treatment effects in a new study setting by extrapolating from
existing estimates (e.g. Menzel (2024) and Gechter (2022)). We discuss this assumption and its
validity at length in the robustness section of our paper.

Second, we show how to generate observational and experimental estimates of treatment effects
that apply to the same population within each ICRCT. This ensures that any differences between
estimates is driven by observational bias rather than differences in the population to which the

3LaLonde (1986), and other studies that focus on a single program, cannot estimate uncertainty about bias. However,
even papers that report on multiple studies, so that there is some hope of estimating 7, focus on reporting bias for
each study independently, or average bias across studies. For example, Glazerman et al. 2003; Chaplin et al. 2018;
Forbes and Dahabreh 2020; Wong et al. 2017 all report estimates from multiple studies, but concentrate on average bias,
rather than uncertainty. Without expecting to be exhaustive, additional papers in this literature also include Agodini
and Dynarski (2004); Arceneaux et al. (2006); Dehejia and Wahba (2002, 1999); Eckles and Bakshy (2021); Ferraro and
Miranda (2014); Fraker and Maynard (1987); Friedlander and Robins (1995); Gordon et al. (2019, 2023); Griffen and
Todd (2017); Heckman and Hotz (1989); Heckman et al. (1998a); Smith and Todd (2005).

4Formally, we assume that the joint distribution of bias estimates is invariant to permutations of study IDs, see e.g.
Higgins et al. (2008).



estimates apply. We distinguish between two kinds of ICRCT. In eligibility designs the control group
has no access to a program but the treatment group does. In encouragement designs both groups
have access, but the treatment group receives some additional encouragement, for example a
subsidy. In an eligibility design, under standard assumptions,” the RCT can be used to recover an
experimental estimate of the TOT. It is also possible to form an observational estimate of the TOT
using observations from the treatment group, if conditional independence, SUTVA, and common
support all hold.® In an encouragement design, again with standard assumptions,” an ICRCT
allows an instrumental variables estimate of the causal effect of the program on those induced to
take-up by the encouragement. We refer to this as the treatment effect on compliers (TOC). We
show that the TOC can also be recovered as an observational estimate under the assumptions of
conditional independence, common support, and SUTVA, using a scaled weighted average of
observational estimates of the TOT in the treatment and control groups.

Third we compute, for each study, the difference between the experimental and observational
estimates of either the TOT or TOC. Since we assume the RCT provides a consistent estimate of
the true effect of interest, the difference yields an estimate of observational bias.® Naturally each
bias estimate applies to a different sub-population, due to variation in study setting and design.
Within the set of eligibility designs our bias estimates apply to takers within the treatment group,
a group that will differ across studies. Within encouragement designs, our estimates apply to
compliers who are a subset of the takers within the treatment group. Our primary results treat all
these bias estimates as exchangeable: given current information, there is no clear reason to predict
that the distribution of bias will differ systematically between sub-populations; we will also show
that the findings are robust to restricting attention to eligibility designs.

Our estimation methods are chosen to minimize any differences between observational and
experimental estimates that are not caused by observational bias. We create observational estimates
using “hands-off” procedures that do not require researcher input. This removes the possibility
of deliberately or inadvertently tuning the observational estimate to match known experimental
results, a potential weakness in the prior literature. We use three methods: naive comparison of
means between those treated and not (“with-without”, or WW); post double selection lasso (PDSL
Belloni et al. 2014); and double-debiased machine learning (DDML Chernozhukov et al. 2018).”
These methods were chosen as they can consistently estimate treatment effects in the presence of

many nuisance parameters, while fulfilling our desire to remove researcher degrees of freedom.

SIndependence: assignment to treatment (eligibility) is independent of potential outcomes and potential take-up. First
stage: assignment to treatment increases the probability of take-up. SUTVA (Stable Unit Treatment Value Assumption):
i’s potential outcomes are independent of j’s take-up. Exclusion: assignment to treatment only affects outcomes through
take-up. See Appendix A.1 for formal definitions.

®Conditional independence says that potential outcomes are independent of take-up conditional on observables.
Common support says that, there are comparable takers and non takers. See Appendix A.1 for formal definitions.

“Independence, First stage, SUTVA, Exclusion, and Monotonicity. Monotonicity says that take-up is weakly
increasing in assignment to the treatment (encouragement). See again Appendix A.1.

8We later show robustness to potential biases in the RCT estimates themselves, for example failure of Exclusion.

9We also experimented with a hands-off propensity score matching estimator that uses LASSO and cross validation
for covariate and bandwidth selection. We did not pursue this further due to presence of some extreme outliers.



Our use of ICRCTs also means that experimental and observational estimates are created using
the same data set and surveying methods. This removes a concern with many studies following
LaLonde where experimental and observational estimates were created with different data sets.

Finally, we use random effects meta-analysis to combine estimates from our 53 studies and
recover our three key parameters. This requires that all biases are measured on a common scale,
so we make two normalizations. We measure bias in standard deviations of the observational
control group outcome.'” And we align outcomes such that a positive treatment effect always
indicates an increase in welfare (based on a manual coding of each outcome variable) and thus
a positive bias indicates an overestimate of the welfare benefits of the program being evaluated.
Our main results take a single primary bias estimate from each study (based on an index of the
most important welfare measures), but we find extremely similar results under other aggregations
including an omnibus of 2540 individual bias estimates.

The results are surprising. First, we find that there is little bias on average. Using our
best-performing observational method (DDML), there is a statistically insignificant and modest
negative mean bias of —0.025 standard deviations. This implies that observational studies do not
systematically over- or underestimate the welfare impact of the programs they evaluate. Second,
variability is large. The standard error of the average bias is 0.038, while our estimate of T is
0.204. Interpreting these numbers through the lens of the confidence interval in (1), the effective
standard error of an infinite-N observational study is 0.207 standard deviations. In many areas
of study, for example health programs, a 0.2 standard-deviation impact is considered large. The
minimal detectable effect size (MDE) for an infinite-N observational study using our confidence
intervals would be two to three times larger than this.!! Third, we find substantial variation in
the performance of observational methods. While DDML does reduce variance relative to a naive
comparison of means, decreasing the effective standard error, PDSL performs less well and in
some cases increases uncertainty relative to a specification without covariates.

We then turn to illustrating the usefulness of our confidence intervals. We first show that
our adjusted intervals give far better coverage than unadjusted intervals, and hence allow a
researcher using observational methods to give a more honest, quantitative sense of estimation
uncertainty. We demonstrate this within our own sample, and in an entirely new setting. Within
our own sample, we re-estimate the meta-analysis leaving out each study one by one, and use
the new values of i, 5’5, and T to adjust the confidence interval of the left-out study. We measure

coverage as the proportion of observational confidence intervals that include the experimental

19To be precise, we use the standard deviation of outcomes among the pooled untreated units within each study,
regardless of the randomization arm. We choose this standardization (rather than one based on the RCT control group)
because it is always available to our hypothetical policymaker that wants to bias-correct their observational study.

HMinimal detectable effect size is a notion often used in experimental design and records the smallest possible
true effect that can reliably be estimated with statistical significance. Minimal detectable effect size reflects the fact
that it is difficult to distinguish true effects from statistical artefacts because estimates vary across samples taken
from the same population, all the more so if samples are small and outcomes are highly variable. We argue that
variation in selection bias across programs, outcomes, locations and sets of control variables also generates variability
for observational estimates, and this variability persists even with infinitely large sample sizes. We use the rule of
thumb of MDE = 2.8 x effective SE.



point estimate. The results are stark: for example, after using DDML to try and correct for bias,
only 68% of uncorrected 95% confidence intervals contain the experimental estimate, rising to
90% after our bias correction (much closer to the nominal 95% level). For a tougher, more clearly
out-of-sample test, we collected data from 11 LaLonde-type studies that compare observational
and experimental estimates. This gives us 580 new point estimates in which the researcher has
taken some effort to eliminate observational bias. Nevertheless, conventional 95% confidence
intervals around these estimates contain the experimental estimate only 60% of the time, while
our bias-corrected confidence intervals (based on i, @'ﬁ, T in our sample) are almost dead on the
nominal level, at 94%. Perhaps unsurprisingly this improvement in honesty comes at a substantial
cost to power, which we discuss at length throughout the paper.

We next show how our approach can support meta-analyses that combine experimental and
observational estimates. There is no current agreed upon approach to do this. A researcher
can include potentially-biased observational studies, knowing that they may skew the findings
and be overweighted due to exaggerated precision; or exclude them, throwing away valuable
data. Our confidence intervals place observational and experimental estimates on the same
footing, with appropriate measures of precision. We show the value of this approach by re-
analyzing a meta-analysis of interventions to prevent sexual violence (Porat et al., 2024). In
a meta-analysis of impacts on perpetration, RCT-based estimates are positive (i.e., a welfare-
improving reduction in perpetration), but noisy, meaning there is no statistically detectable effect
of the programs. Observational estimates are smaller in magnitude on average, but less noisy,
nevertheless a researcher may be concerned that this is driven by selection bias rather than a true
effect. Correcting the observational estimates using our method and combining observational
and RCT estimates resolves the problem: there is a large and statistically significant reduction in
perpetration caused by the programs on average.

Finally, we show how our approach allows for a better-informed choice between observational
and experimental methods. We ask at what sample size an RCT has a smaller expected standard
error than an infinite-N bias-corrected observational study. We find that a perfect-compliance
RCT can have a smaller expected standard error with a sample of just 93 observations. Things
look better for observational studies if there is imperfect compliance, but even with only 25%
compliance an RCT would still only need 1487 observations to dominate.

These results demonstrate the validity and usefulness of our method. Next, we assess whether
relaxing our main assumptions can increase the power of bias-corrected observational estimates.

Our key assumption is exchangeability: the policy maker has no good reason to estimate the
distribution of bias for her study using only a subset of our studies, so uses the full sample. We
have already shown that this assumption seems reasonable overall, as it leads to good coverage
both within and outside of our sample. Many readers may still worry that we are lumping
together studies that draw from predictably different bias distributions. For example, they might
argue that an expert could divide studies into those likely to be positively biased and those likely
to be negatively biased, and by so doing decrease uncertainty about residual bias. We show



empirically that this is not justified. We first use a frontier Large Language Model (GPT 4.1) to
mimic an incredibly well-informed literature expert, and ask the model to predict bias direction
for each study in our sample based on detailed information about the intervention and eligible
population. While the LLM shows some ability to distinguish studies with more-negative or
more-positive bias, and is able to provide convincing rationales behind each prediction, this has at
best a modest effect on reducing effective standard errors.

A second concern might be that our sample includes poor-quality bias estimates that in turn
bias ji and t. We show that our findings are robust to diverse attempts to remove potentially poor-
quality estimates: we drop RCTs with encouragement designs; a weak first stage; few regression
covariates; doubts about SUTVA; doubts about the exclusion restriction. Our estimate of the
effective standard error decreases by at best 20%, far from enough to transformatively improve
power of a bias-corrected observational study. We also show robustness to other modeling and
estimation choices such as our parametric Normality assumption.

Our paper is inspired by the pioneering work of LaLonde (1986), which showed that RCT
estimates were hard to recover with observational approaches. We move beyond testing whether
observational methods can recover experimental estimates, and provide a tool that can make them
more useful even when they cannot. We have additional advantages over much of that literature.
Our use of ICRCTs and access to rich micro data means we can use the same datasets to estimate
experimental and observational estimates; and we emphasize the use of hands-off estimators to
reduce researcher degrees of freedom.

The recent paper by Gechter (2022) is complementary to our work. That paper shows how to
use an instrumental variable (arrival of J-PAL in a country, which lowers the cost of implementing
an RCT), to estimate the extent of observational bias for a set of complier studies. By comparing
the results of these complier studies to observational estimates, Gechter is also able to estimate
the extent of site-selection bias (under the assumption that complier and always-taker RCTs have
the same average estimates). Relative to our work he concentrates on studying average bias, while
we place more emphasis on uncertainty. He also concentrates on two literatures—microcredit
and cash transfers—while we consider a broader set of studies. His paper does however raise the
possibility that our RCT database may not be representative of all observational settings, due to
site-selection bias. This limits the application of our methods to places where it would be plausible
to run an ICRCT. Empirically, he finds limited, although noisily estimated site-selection bias. Our
paper is also related to Angrist et al. (2017), who use school admission lotteries to validate and
improve observational value-added models in education.

The paper is structured as follows. Section 2 summarizes the methods we use to estimate
and aggregate bias. Section 3 describes our data set of ICRCTs. Section 4 summarizes the
results of our main meta-analysis. Section 5 presents our three applications: adjusting individual
studies, adjusting meta-analyses, and deciding between conducting an RCT or an observational
study. Section 6 evaluates whether we can improve the power of corrected observational studies

using expert (LLM) predictions of bias, by dropping low-quality bias estimates, or relaxing other



identifying assumptions. Section 7 concludes.

2 Overview of Methods

In this section we give an overview of the methods we use to estimate {, 0‘%,1’2}, and the
assumptions under which the confidence interval in equation (1) makes sense. We produce
our estimates in two steps, we first estimate bias in each of our studies, then we combine these

estimates using meta-analysis. We describe each step in turn.

2.1 Study-Level Estimators of Bias

Our goal is to provide adjusted confidence intervals that account for uncertainty about observa-
tional bias. We envisage these being used by a policy maker who has access to an observational
data set in which some subjects have adopted a program. Under the three assumptions of condi-
tional independence, common support and SUTVA,'? a data set of this kind can be used to form
an estimate of the population treatment effect on the treated (TOT). Given this result we consider

the TOT to be the policy maker’s parameter of interest. We assume that the policy maker is able

to form an observational estimate of TOT, which we denote T/O\TOBS. To avoid confusion we refer
to the population analog of this estimate, TOT?5%, as an estimand.

We aim to estimate the bias By = TOT?8° — TOT. If the conditional independence, SUTVA,
or common support assumptions fail, TOT?%% may not be equal to TOT. We want to include
all these sources of bias in our estimates, after making our best effort to minimize them using
observational methods as discussed below. Because we do not directly observe TOT, we will form

our estimand and eventually estimator of bias as B = TOT98% — TOTEX?, where TOTEX? is the

BS _——EXP
—TOT

our estimate of bias, formed by taking the differences between observational and experimental

Y ——0
estimand of an experimental estimator formed from an ICRCT. We denote B = TOT

estimates.

If TOTEXP is close to TOT, then B will be a good estimate of the bias By that we are interested
in. Our experimental estimand may differ from TOT for two broad reasons. First, in the presence
of heterogeneous treatment effects, the experimental estimator may apply to a different subset of
the population than the population-level TOT that we are aiming to estimate. Second, we will
need standard identification assumptions to hold in the experiment. We discuss each of these
issues in this section, first for eligibility designs, and then for encouragement designs.

Eligibility designs make a program available to a randomly chosen subset of the study
population (the treatment, or eligible group). Imperfect compliance in this design occurs when not
all eligible subjects take up the program. With an eligibility design it is relatively easy to ensure
that both experimental and observational estimates apply to the same population. Following
Bloom (1984), we define TOTEXP as the ratio of the intent-to-treat estimand and the take-up rate

12 Appendix A.1 provides formal definitions of all the identification assumptions discussed in this section.



in the treatment group.

It is well known that, under the standard IV assumptions for the validity of the RCT (inde-
pendence, first stage, SUTVA, and exclusion), the Bloom estimand recovers TOT, the average
treatment effect among those who take up the program (e.g. Angrist and Pischke 2009). It is also
well known that, under two additional assumptions—conditional independence and common
support—we can use observations from the eligible group to form an observational estimator
that also identifies TOT by comparing those who take up to those who do not, conditional on
observables (see below for details of the estimators we use). It then follows that, provided the
assumptions for the validity of the RCT hold, TOT35 — TOTEX? identifies the observational bias.

One issue is worth noting at this point. The set of people who choose to select in will be
differently selected in each study, and so the relevant population to which the TOT applies will
vary from study to study. At face value that might suggest a failure of exchangeability. Our
approach to this issue (and more generally) is to observe that a priori there is a complete lack
of knowledge about differences in the distribution of bias between population groups, thus no
reason to consider any study in particular to be exchangeable or not with the policy maker’s
study of interest. We revisit whether this is reasonable when we analyze Robustness in Section 6.

Encouragement designs, in contrast, randomly incentivize take-up of a program that is
available to everyone. Imperfect compliance can occur in this design in the treatment and control
groups when not all subjects take up the program. For studies of this type, under the standard
IV assumptions (independence, non-zero first stage, SUTVA, and exclusion) plus monotonicity,
the Wald estimand (the intent-to-treat effect divided by the difference in compliance rates across
treatment arms) identifies the average treatment effect for the compliers (those who are induced
to take up by the incentive), which we denote TOCEXP (Imbens and Angrist 1994). It is also well
known that, with an encouragement design, it is not possible to identify TOT from the experiment
alone, which appears to create a problem for us.

We address this problem as follows. Theorem 1 in Appendix A.l states that under the
assumptions of conditional independence, SUTVA, and common support

TOCOBS TOTSE: Pr(D = 1|treat) — TOTQES Pr(D = 1|cont)

Pr(D = 1|treat) — Pr(D = 1|cont)

TOBS

ient 1S an observational

is an estimand for the treatment effect on compliers. In this expression, TO
estimand of the TOT based on the observations of the study’s treatment group, TOT5? is the

cont

same for the study’s control group, and Pr(D = 1|t) is the probability of take-up in group t €

{cont, treat}. If we have consistent estimators for TOTSE? and TOT(E?, the empirical counterpart

of TOC®S results in a consistent estimator for the treatment effect on compliers. This expression

makes intuitive sense. The term TOTSE Pr(D = 1|treat) tells us how much the average outcome

in the treatment group is increased by the program, while TOTQE>Pr(D = 1|cont) tells us the

same for the control group. The effect on the treated in the treatment group reflects the average

effect for both always-takers and compliers, since both groups receive treatment when assigned



to treatment. The effect on the treated in the control group reflects only the effect for always-
takers, as they are the only units who receive treatment when assigned to control. Therefore,
by appropriately weighting out the contribution of always-takers, we can recover the effect for
compliers.

With an experimental and an observational estimator for the treatment effect for compliers
in hand, if the assumptions for experimental validity hold, then TOCO55 — TOCEX? identifies
observational bias for TOC.

Our final concern is that our goal is to estimate the bias in observational estimates of TOT,
not TOC. We start from the observation that we have very little information that could be used
to rank the extent of bias in an estimate of TOC, relative to an estimate of TOT. Given this, we
think it is reasonable to argue that our hypothetical policy maker would be willing to assume
that an estimate of the bias in TOC is exchangeable with her desired estimate of the bias in TOT
for her setting. Note that this is essentially the same assumption that was required to aggregate
estimates of the bias in TOT: the policy maker is willing to assume exchangeability across the
taker and complier populations. We also show in Section 6 that excluding encouragement designs
altogether has little impact on our overall conclusions.

In summary then, for each eligibility-design study s =1, ..., S, and each individual regression

specification 0 = 1, ..., N; available within that study, our bias estimate is:

-~ _——OBS ——EXP
By = TOT,, —TOT,,

whereas for encouragement-design studies we have:

-~ ——OBS ——EXP
B,, = TOC,, —TOC,,

We discuss how we deal with having multiple specifications per study later in this section, after
we talk about our chosen estimators. We also calculate a standard error &g, for each bias estimate.
Appendix B explains how we do this.

Validating experimental identification assumptions. Our approach to ensuring the exper-
imental identification assumptions hold is twofold. First, we have concentrated on gathering
data from high-quality RCTs, as we discuss below. Second, it is possible to exclude potentially
problematic bias estimates from our sample. We pursue this approach in section 6 below, and

argue there that our results are robust to the exclusion of these studies.

2.2 Experimental Estimator

We produce our experimental estimates using a basic 2SLS regression including dummies for all

strata on which the randomization was stratified.



2.3 Choice of Observational (Hands-off) Estimators

To create our bias estimates we need to decide on observational estimators. The choice of estimator
has been a concern in much of the literature that builds on LalLonde (1986). If a researcher
has access to the experimental estimate prior to choosing an observational estimator, then the
researcher has some latitude to choose an estimator that comes close to approximating the
experimental estimate. This does not need to be intentional, the researcher may be influenced
by results in the literature or contemporaneous theorizing (the garden of forking paths).!® To
overcome this problem we exclusively use “hands-off” estimators, which allow very limited
researcher degrees of freedom. Here we are greatly helped by recent econometric advances that
build on machine-learning methods to consistently estimate treatment effects in the presence
of a high-dimensional set of nuisance parameters (e.g., Belloni et al. 2014 and Chernozhukov
et al. 2018). In essence, these methods use machine learning to select from a very large set of
potential covariates, an approach that is helpful in our setting where we have an average of over
400 covariates per study (Table D.1).

We implement three hands-off estimators. First, a naive “with and without” estimator (WW),
which simply compares outcomes for those who chose to take up the program (“with”), to those
who did not (“without”). Second, the post double selection lasso (PDSL) of Belloni et al. (2014).
Third, the double debiased machine learning (DDML) approach of Chernozhukov et al. (2018).
The PDSL and DDML approaches are similar in spirit, so here we give only a brief discussion of
DDML, see Appendix B for full details.

We apply the DDML method to a partial linear model, and proceed (roughly) as follows.
First, the sample is split into a training and test set. On the training set, we use a regularized
machine-learning method to create a prediction, for each subject, of the outcome without take-up,
and the probability of take-up. This “double” prediction, one for outcome and one for take-up, is
what gives the approach its name. In the testing set we then regress the difference between the
observed outcome and predicted outcome without take-up on the difference between observed
take-up status and predicted take-up status. We repeat this process with multiple splits and report
the average coefficient on take up.!* Splitting helps reduce concerns about over-fitting. When
implementing this approach we use all available covariates in the study dataset; the regularization
in the ML method effectively chooses which controls to use. Chernozhukov et al. (2018) show
that DDML yields consistent estimates of treatment effects when conditional independence holds
given the set of covariates X, even if the set of covariates is large. Importantly for our application,

it requires very little researcher input beyond choosing some tuning parameters for the learners.'

13The researcher might also face incentives to choose an observational estimator that poorly reproduces the experi-
mental estimate, depending on their motivations.

140One way to get intuition for why this works is to note that it can be interpreted as using the deviation from
predicted take-up as an instrument, in a regression with deviation from predicted outcome as the left hand-side
variable. The deviation from predicted take-up is excluded in this setup because, by the conditional independence
assumption, the deviation from prediction is purely random noise which determines why some individuals take up
despite having the same observables.

15When implementing DDML we always use a random forest as the machine learning method because this means
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2.4 Aggregating Estimates of Bias and Forming Confidence Intervals

We first discuss how we aggregate bias estimates assuming there is only one estimate per study.
Then we show how we extend the analysis to the case of multiple estimates per study.

Assume the policy maker believes her observational estimate is drawn from a Normal distribu-
tion
0

BS
, ~N(TOT, + Bp,agp),

TOT

where p denotes the policy maker’s study of interest. Uez,p

based on sampling error, while B, is the unknown observational bias of her study.

is the standard error of her estimate

Next, we assume that the policy maker believes that B, is drawn from the same distribution as

the bias in each of our studies:
By ~ N (p,7%), and Bs ~ N (u, %), for s # p (2)

where y is the true mean bias, and 72 the true variance of bias across studies. Condition (2)
may seem like a strong assumption, but it is a simple way to capture our key exchangeability
assumption, and we show in section 6 that it approximates the data well.

Introducing this notation immediately raises the question of how to interpret y, in particular
its sign. We will define a positive bias as one that exaggerates the welfare benefits of the program
studied. A finding of a positive mean bias would then suggest that the types of people that choose
to select into programs are the types of people who would have done relatively well, even without
the program. A positive mean bias would also imply that, all things being equal, policy makers
relying on observational studies will tend to recommend programs that are in fact less beneficial

2 measures the fundamental

than they believe. A negative bias has the opposite interpretation. T
variance in observational bias across studies, and is in some sense a measure of our ignorance.
We wish to use our set of estimates {Bs, 0ps} to form estimates of y and 72. To do this, we

assume that for each study s in our set of studies:
BS:V+175+VS (3)

where, in line with (2), 75 ~ N(0, TZ), and v is a sampling noise distributed N (0, (717;,5), which
follows from the Central Limit Theorem. Equation (3) describes a random-effect meta-analysis in
which, as standard in this literature, the variance Ué/s is replaced by our estimated variance (ATIZB,S. It
can be efficiently and consistently estimated using Restricted Maximum Likelihood (Raudenbush,
2009; Chabé-Ferret, 2023).

Performing this analysis requires that biases are measured in a common metric, so we make
two normalizations. To make units of measurement comparable across studies, we express all

bias estimates in units of standard deviations of the control-group outcome variable in that

we do not have to choose whether to include interactions or higher order terms in the control set. When we use PDSL
we include only linear terms. We make use of default software parameters throughout to further minimize researcher
degrees of freedom, see Appendix B.
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study. Second, in line with our interpretation of positive bias as exaggerating welfare benefits, we
manually align the signs of all outcome variables such that more positive values imply higher
social welfare, all else equal.!® Our meta-analysis then returns {, 2, @'ﬁ} as desired.

Finally, we can use these estimates to build an appropriate confidence interval for a hypothetical

—~—OBS
policy maker study p for which an observational estimate TOT,  has been constructed, with

_—_0BS
standard error 0¢ p. It follows from equation (3), and the normality of the error, that TOTP ~

N(TOT, + u, 02 p+ 72), with the implication that
—~—0OBS
TOT, —p~N(TOT,, 07, + 0, + 1),

which leads to the confidence interval formula (1) discussed in the introduction when replacing
the variances with their estimated values. Theorem 2 in Appendix A.2 proves the consistency of
these corrected confidence intervals.

Figure 1 gives a simple visual presentation of this confidence region, with solid lines represent-
ing the usual confidence intervals based only on sampling error, and dashed lines representing
bias-adjusted confidence intervals. The diagram assumes fi = 0 (to centre both confidence intervals
on zero), while the y-axis is 0¢ , which is specific to our policymaker’s observational study. In
both cases, study effects that lie outside of the funnel would be considered to have statistically
significant effects, and studies within the “tram lines” between the solid and dashed lines would
be declared significant with standard confidence intervals, but not with our bias-adjusted intervals.

The diagram helps motivate several important observations. First, as we have already noted,
2

it is uncertainty about the extent of the bias, captured by t and 7y,

using observational methods, rather than the mean bias itself. Our policy maker does not need

that poses a problem when

her observational method to accurately estimate the treatment effects, as long as she knows the
size and direction of the bias. This is a key area in which we depart from earlier work building on
LaLonde (1986). The majority of this work, even where there are multiple studies so that there is
some hope of estimating T, focus on reporting bias for each study, or average bias across studies.!”
Second, we are used to thinking of large-N studies as having high power, but that need not be the
case here. Even a very large observational study with &, , approaching zero may have little power
to detect policy-relevant effects if there is much uncertainty about the extent of observational
bias. One interpretation of our empirical results below is that observational studies have indeed
significantly less power than is usually thought. A corollary of this observation is that the only
way to increase power across a range of observational studies that already have large sample size

A

is to increase precision in estimates of observational bias, which will tend to decrease 0'5, or allow

16 A positively-coded outcome is one where a positive effect would increase social welfare, all else equal (e.g.,
income, health), a negatively-coded outcome has the opposite interpretation (e.g. child mortality, crop losses), and
some outcomes are ambiguous (e.g. voting outcomes). We flip the sign of socially undesirable outcomes, and drop
ambiguous cases.

17For example, Glazerman et al. 2003; Chaplin et al. 2018; Forbes and Dahabreh 2020; Wong et al. 2017 all report
estimates from multiple studies, but concentrate on average bias, rather than uncertainty.
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Figure 1: Funnel plot showing examples of bias-corrected and uncorrected rejection regions

Note: This figure presents the rejection regions under the null of no treatment effect for the classical approach which
only accounts for sampling noise (No Observational Bias), and our proposed corrected approach which accounts for both
sampling noise and uncertainty about observational bias (Observational Bias). Both sets are built using the formula in
Equation (1) as a function of 62 (represented as is usual in the y-axis), with 6 = 0.95. Uncorrected regions are built
using fl = 0 = T = 0. Corrected regions are built using f = 0, 6, = 0.05 and T = 0.25.

the policy maker to concentrate on a set of ICRCTs that are more similar to her own, which might
reduce 7.

Finally, our concerns about observational bias are relatively less important for small-N obser-
vational studies (where large conventional standard errors drive most of the uncertainty), but
dominate for large-N studies whose conventional standard errors approach zero. This observation

seems quite important to us, given the increasing availability of very large observational data sets.

2.5 Extension to Multiple Bias Estimates Per Study

Each of our studies includes multiple outcome variables, each of which capture some aspect of
welfare (Table D.1); potentially multiple randomized manipulations (e.g. offer of different types of
credit product); and potentially multiple different definitions of a “program” that is being taken
up.'® As a result, we can obtain multiple bias estimates per study. In principle this provides
useful additional data, but introduces two challenges. First, we need to account for the correlation
structure between bias estimates within a study. Second, it is a priori unclear which outcome
variables are most representative of the welfare measure our hypothetical policy maker would be
interested in.

Accounting for within-study correlation. We do this in two ways. First, we construct an index

18The definition of “program” can be subtle and in our analysis is synonymous with a measure of take-up. For
example, a program could correspond to a taking specific microfinance loan, or to borrowing from any microfinance
lender, both of which are influenced by the randomized entry of a microfinance lender into the community.
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that aggregates all outcome measures within a single study, following Anderson (2008). We think
of this as being a (hands-off) approximation of the welfare function that a policy maker might
have in mind. Consistent with the arguments in Viviano et al. (2021) we use a precision-weighted
average, which—when sampling variances differ—provides the efficient estimator of a latent index
that places equal welfare weight on each outcome, an approach that we find appropriate given the
lack of detailed information on policy makers” preferences.

Second, we allow for multiple bias estimates per study, but adjust for within-study correlation,
so that we do not exaggerate the precision of our findings. To do this, we remain in the classical
meta-analytical framework, but follow Pustejovsky and Tipton (2021) in allowing for within-study

correlation in both effects and errors. Specifically, we generalize (3) to:
Bos =HU + Ws + Los + Vos (4)

where 155 ~ N(0,&2), ws ~ N(0,&2) and v, is again a normal error term, but with Cov(ves, Vyrs) =
p02 and p is a “known” parameter.'® Let N be the number of outcomes per study s. Each bias
1 vNs 52

estimate has a standard error 03,5 and ?752 = X Lo 0
~ Lo—

B,0s 1S the average sampling variance for

study s. The interpretation is that each study draws a bias y 4 w;, there is an additional draw 4,
for each outcome within s and that the sampling errors are potentially correlated within study.
We then report confidence intervals

——0OBS R _ 1—|—5 N N N ~
TOT —],ti@l(z) 02 + 0% + G2, + G- (5)

From now on we denote #2 = ¢2 4 2, so that the total variance is the sum of the within and
between variances. This approach amounts to assuming that the policy maker has one outcome in
mind, and believes that it is exchangeable with any outcome in our data set.

Distinguishing primary and secondary outcomes. Some outcomes available in a given study
may have been collected for robustness checks or secondary analysis. The policy maker may not
be too concerned if those estimates suffer from observational bias, provided effects on her primary
outcome(s) of interest are unbiased. We distinguish between primary and secondary outcomes
using a hands-off approach. Namely, we code as primary any outcome that is mentioned in the
abstract of a paper, and produce analysis for only these outcomes (either aggregated using the
indexing approach described above, or individually). We also produce estimates for all outcomes
in the paper, either individually, or aggregated.

Taken together, our approach yields four different meta-analyses which we label Aggregated
primary outcomes; Aggregated all outcomes; Individual primary outcomes; and Individual all

outcomes.

19We follow the literature by assuming a value for p (see e.g. Viechtbauer (2021)) which we set to 0.6. Results
are robust to different parameter values as discussed in Section 6. We also take into account additional variation by
clustering our standard errors in the meta-analysis at the study level.
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2.6 Quality Checks

To ensure the quality of our estimates we take the following steps. First, we automatically
determine the experimental design (eligibility /encouragement) of each specification, where a
specification is a combination of estimator, study, and outcome.?’ Second, we remove outliers,
defined as any specification where the absolute value of the experimental estimate is larger than
two standard deviations. Third, we remove specifications with a weak first stage by requiring a
Kleibergen-Paap F-statistic larger than 10.

When forming aggregate outcomes, we group by experimental treatment, program, and unit
of analysis (e.g. we separate individual vs. household outcomes) and aggregate within these
groups. In practice that means that we often have several specifications per study remaining after
aggregation (e.g., corresponding to two randomized treatment arms). For example, we might have
an individual-level aggregate, and a group level aggregate. To come to a single outcome per study
we multiply the share of compliers by the number of experimental units and select the estimate
with the highest value.

3 Data Description

Two important advances make our approach feasible, one methodological and one practical.
On the methodological side, modern approaches such as DDML allow us to create hands-off
observational estimates, even in the presence of very large sets of covariates. On the practical
side, our approach requires a large set of ICRCTs. Here we are in debt to the pioneering work
of two organizations, the Abdul Latif Jameel Poverty Action Lab (J-PAL) and Innovations for
Poverty Action (IPA). Since their founding in 2002 and 2003 respectively, these two organizations
have worked to encourage the use of randomized policy evaluations across the developing world.
Because our approach requires access to micro-data, we access data from many of these RCTs
hosted on their respective Dataverses. In this section, we describe how we select studies, and

describe the studies that are in our sample.

3.1 Study Selection

We start with 207 studies from the IPA and J-PAL dataverses. Within this set of studies, we select
all ICRCTs where the data record treatment assignment and take-up, and at least one outcome
variable (left-hand-side variable in a regression reported in the paper). This leaves us with a
sample of 53 ICRCTs (see Appendix C for details about the screening process and a list of the

20To do this we calculate the normalized minimum detectable effect (NMDE) on each treatment arm. If the NMDE is
greater than 1 we conclude that there is insufficient take-up in that arm to form a reliable observational estimate, in
which case we force take-up to be zero (if in the experimental control arm) or one (if in the treatment arm). The design
is then determined as perfect compliance if take-up is always zero in control and one in treatment; eligibility if take-up
is always zero in control and a mix of zeros and ones in treatment; and encouragement if there are a mix of zeros and
ones in both.
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included studies). We have on average 48 distinct specifications (randomized manipulation x take-

up measure X outcome combinations) per study, and 10 primary specifications per study. Our

“Individual all outcomes” meta-analysis consists of 2540 bias estimates. For additional study-level

summary statistics, see Table D.1.
3.2 Description of ICRCT Sample
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Figure 2 shows counts of four characteristics of our studies: country, sector/topic, journal and

author. Panel 2a shows that our studies come almost entirely from developing countries, reflecting



the goals of J-PAL and IPA. We have studies from Africa, South America, and Asia, as well as
North America (USA and Canada) and Europe (France). Studies from countries with IPA or J-PAL
hubs are strongly represented. India and the Philippines appear the most in our analysis, with
Kenya, Uganda, Liberia and France also being highly represented. We use J-PAL’s eleven sectors
to categorise our studies by topic in panel 2b. The most represented sectors are finance, education
and health and governance, all common areas of study within development economics. Panel 2c
shows authors who appear at least twice in our dataset. Almost all of these authors are prominent
development economists.

Sampling from repositories may give us broader coverage of types of study, and a weaker
publication filter compared with e.g. sampling publications in top-5 economics journals (see
Appendix E.3 for more discussion of publication bias). Panel 2d shows that we indeed have broad
coverage of high-impact economics journals, as well as a number of journals from other disciplines
and working papers.

It is difficult to assess whether our sample is representative of the kinds of studies a policy
maker would be interested in, but we can at least descriptively compare the included studies to
those that appear in the repositories but were excluded in our screening process. Appendix Figure
D.2 shows the distributions of locations (by continent) and sector for the two samples. There are
some differences but no clear patterns of exclusion, except that no Gender studies are included in
our analysis while around 6% of excluded studies are assigned to this “sector.”

4 Meta-analytic Results

Table 1 summarizes the results of our meta-analysis, and gives our estimates of {f, ?Tﬁ, £2} broken
down by observational method.?! Our preferred specification is presented in panel A, which
shows results for one aggregated primary outcomes measure per study. The second panel shows
results aggregating all study-level outcomes, the third panel show the results for each individual
primary outcome, and the fourth panel for every outcome variable.

Column “TE” presents a meta-analysis of the experimental treatment effects. Unsurprisingly,
average effects on primary outcomes are larger than when looking at all outcomes within a
paper (some of which correspond to robustness checks or low-priority analyses). On average, the
programs we study improve our aggregate measure of welfare by 0.173 standard deviation units.

Columns (2)-(4) show meta-analyses of bias for our three observational methods. The results
are striking. Regardless of the method used, or the approach we take with respect to the outcome
variables, we find very small average bias. For example, for aggregated primary outcomes, the
average bias using the DDML estimator is —0.025 standard deviations, around 14% as large as
the treatment effect of the average program. In addition to the small size, average bias is never
significant. We conclude that there is little evidence that observational studies systematically over

2IWhile we have N = 53 studies in total, two of the aggregated primary outcome specifications do not survive our
screening for outliers/first stage hence N = 51 in panel A.
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Table 1: Meta-analysis of Bias

TE WW  PDSL DDML
Panel A: Aggregated primary outcomes
Mean (j1) 0.173 -0.030 -0.055 -0.025
SE (0,) (0.041) (0.044) (0.050) (0.038)
Standard deviation () 0251 0277  0.204
Effective SE 0.255  0.281 0.207
Num. obs. 51 51 50 51
Panel B: Aggregated all outcomes
Mean (f1) 0.085 0.023  0.038  0.007
SE (0,) (0.032) (0.038) (0.041) (0.035)
Standard deviation () 0.213  0.218 0.182
Effective SE 0216 0222  0.185
Num. obs. 53 53 52 53
Panel C: Individual primary outcomes
Mean (1) 0.154 -0.051 -0.058 -0.053
SE (0,,) (0.030) (0.037) (0.032) (0.030)
Total standard deviation (7) 0.280  0.231 0.226
Effective SE 0282 0233 0.228
Num. obs. 540 540 534 540
Panel D: Individual outcomes
Mean (j1) 0.077 -0.010 -0.033  -0.029
SE (0,) (0.017) (0.023) (0.024) (0.017)
Total standard deviation (7) 0.257  0.324 0.213
Effective SE 0258  0.325  0.213
Num. obs. 2540 2540 2368 2540

Notes: This table presents estimates of the meta-analytic regression introduced in Equa-
tion (3) (Panels A and B) and its generalized version introduced in Equation (4) (Panels C
and D) for experimental treatment effects (column 1); the bias of the simple with-without
estimator (i.e. selection bias) (column 2); the bias of the post double selection lasso es-
timator (column 3); and the bias of the DDML estimator (column 4). We also present

estimates of the effective standard error: Effective SE = /ffﬁ + %2, Num. obs. reports the

number of treatment effect or bias estimates used in each regression. Panel A includes one
aggregated outcome generated from the primary outcomes for each study, panel B includes
one aggregated outcome generated from the all outcomes for each study, panel C shows
the results from using all primary outcomes in each study, panel D shows the results from

using all individual outcomes in each study. The total standard deviation T = 4/ &2 4 &2
reported in panels C and D captures both the between-study and within-study components
of variance.
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or underestimate program impacts on average.
Small average bias does not mean that observational biases are small. We define the effective
standard error as the standard error of a hypothetical infinite-N observational study (Effective SE :=

07 + 12). These are always large, regardless of the observational method or sample. Looking
across the table, the smallest effective standard error is 0.185. That in turn implies that an infinite-
N observational study would still have a minimum detectable effect size of 2.8 x 0.185 = 0.52
standard deviations, which is large relative to typical treatment effect magnitudes (including
those estimated in our “TE” column). This in turn implies that there are large and policy
important impacts that simply cannot be detected with an observational approach, given our
current knowledge about observational bias.

The table also shows that the choice of observational method matters. DDML outperforms both
a naive with-without comparison and PDSL in all panels in terms of having a smaller effective
standard error. Further, PDSL often performs worse than the naive with-without comparison (and
we had to trim some extreme outlier estimates, explaining the slight reduction in sample sizes).
This poor performance potentially reflects over-fitting and finite-sample instability. Noting this,
we focus the ensuing discussion on results from DDML and WW.

Figure 3 provides another way to look at the results. Each point represents the effect size and
standard error of an observational estimate in our sample. As in Figure 1, the solid lines show a
standard confidence interval that accounts only for sampling error; estimates outside the funnel
would be deemed statistically significant at the 5% level. The dashed lines show our adjusted
confidence intervals, which take into account uncertainty about observational bias. Panels (a)
and (b) show results for all outcomes, (c) and (d) for aggregated primary outcomes. We see
that adjusted confidence intervals are much wider than the standard intervals, and there are few
effect-size estimates large enough to remain significant after adjusting for uncertainty about bias
(the table notes go into greater detail on how many lose significance in each case).

We can also use the same figure to compare across different observational methods. The left
figure of each pair shows that the naive with-without estimator has a larger confidence region
than the DDML method shown on the right. By adjusting for selection on observables and thereby
reducing uncertainty about bias, DDML improves the power of the observational study (MDE falls
from 0.71 to 0.58 standard deviations in the case of our preferred aggregate primary specification).

5 Applications

This section applies our findings to three domains: constructing more honest confidence intervals
for observational studies; increasing power in meta-analyses by combining experimental and

observational estimates; and choosing between experimental and observational approaches.
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Figure 3: Funnel plot of observational treatment effect estimates with corrected and uncorrected
confidence regions

Note: The solid lines represent the uncorrected confidence regions and the dashed lines represent the corrected
confidence regions. The two figures on the left plot the treatment effects associated with all outcomes: for the with-
without in panel (a), 883 treatment effects are statistically significant whereas only 215 remain statistically significant
after correction. For the DDML in panel (b), 732 uncorrected treatment effects are statistically significant whereas only
251 remain statistically significant after applying the correction. The two figures to the right plot the treatment effects
associated with the aggregated primary outcomes. For the with-without in panel (c), 23 uncorrected treatment effects
are statistically significant and only 4 remain so. For the DDML in panel (d), 23 uncorrected treatment effects are

statistically significant and only 5 remain so.

5.1 More Honest Confidence Intervals

A first goal of our approach is to provide confidence intervals for observational methods that are
comparable to those from an RCT. That is, confidence intervals that are highly likely to include

the true causal effect.

5.1.1 Leave-One-Out Confidence Interval Correction in Our Sample

For each study in the sample, we remove it from the dataset and re-estimate the bias distribution
using only the remaining studies. We then construct a bias-adjusted confidence interval for the
treatment effect in the omitted study. This simulates a practical scenario in which a researcher
uses previously accumulated evidence to correct an observational estimate in a new setting.
Figure 4 plots the results. For each study in our sample we show the point estimate and
confidence interval for three approaches: the experimental estimate, the observational estimate
based on DDML, and the bias-corrected observational estimate. All results use only aggregated
primary outcomes, and impacts are measured in standard deviations of the outcome variable. We
can see numerous cases where the experimental and uncorrected DDML confidence intervals have

20



Method —-e— Experimental DDML -=— DDML Corrected

15
1.0
0.5

0.0 + + ’

-0.5

Treatment effect estimate

il | M <|*H*H HhE {M

-1.0

Aggregated primary outcome

Figure 4: Corrected and uncorrected observational confidence intervals compared to RCT estimates

Note: This figure presents point estimates and confidence intervals of the effect of one treatment per study on
aggregated primary outcomes. We report estimates for the treatment with the largest number of compliers in each
study. Experimental estimates are from 2SLS regressions with strata fixed effects. Uncorrected observational estimates
are DDML estimates. Corrected observational estimates apply the correction in Equation (1) using leave-one out
estimates of fI, 0, and . Leave-one out estimates are built by estimating Equation (3) by Restricted Maximum Likelihood
on the sample of aggregated primary outcomes excluding the study for which we are building the correction.

zero overlap, whereas the corrected DDML confidence intervals do overlap with the experimental
one, suggesting qualitatively that the correction is working. Overall, uncorrected confidence
intervals for observational estimators appear to be too tight, and our correction allows a researcher
to be honest about the uncertainty generated by observational bias. Next, we quantify these
observations, first within our sample of studies, and second by applying our correction to estimates
from outside our sample.

Figure 5 provides a more focused summary of the results. The figure first shows that our
proposed confidence intervals have much improved coverage rates. To calculate coverage we
count the frequency with which the observational confidence interval contains the experimental
point estimate. A valid 95% confidence interval should do so 95% of the time. Uncorrected
coverage is just 67% under WW and 68% under DDML. Failing to account for observational
bias leads to confidence intervals with very distorted size. In contrast, our corrected confidence
intervals achieve 92% and 90% coverage respectively, much closer to the 95% target. If anything
our proposed correction remains slightly conservative, and will still tend to over reject.??

The figure then shows that this improvement in coverage comes at a significant power cost. To

22Note that the coverage rate we report in Figure 5 is an estimate of the true coverage rate. Part of the distance
between the coverage rate we report and the nominal rate is due to sampling noise in the experimental treatment effect,
which has nothing to do with the actual performance of our corrected confidence interval.
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calculate power we look at the sample of cases in which the experimental estimate is statistically
significant, and report the proportion where the observational estimate is also significant and of
the same sign. Our proposed correction decreases power from about 55% to about 25%, suggesting
that observational studies have much lower power than usually reported. In section 6 we consider
whether we can increase power by relaxing some of our assumptions.

Finally, Figure 5 reports a small drop in the reversal rate. The reversal rate is the proportion
of studies where the experimental estimate is significant and the observational estimate is also
significant but of the opposite sign. Within our sample reversals are rare — 1% uncorrected, 0%
after correction, this is not the case for our second exercise below.

In sum, uncorrected observational confidence intervals have poor coverage, and overstate

power. Our approach significantly improves coverage, and provides a more realistic reflection of

power.
Method Original . Corrected
WwWw DDML
0.67 0.68
coverage 1
055 053
power 1
0.01 0.01
reversal 4
0 ‘o
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Figure 5: Leave-one-out estimates of the properties of corrected and uncorrected observational
estimates

Note: This figure presents leave-one out estimates of the performance of corrected and uncorrected confidence intervals
for observational estimators on the sample of aggregated primary outcomes. Corrected observational estimates apply
the correction in Equation (1) using leave-one out estimates of fi, 6, and . Leave-one out estimates are built by
estimating Equation (3) by Restricted Maximum Likelihood on the sample of aggregated primary outcomes excluding
the study for which we are building the correction. We measure coverage as the proportion of times the observational
confidence intervals contain the experimentally estimated treatment effect. We measure power as the proportion of
times the observational confidence intervals detect a statistically significant treatment effect of the same sign as the
corresponding statistically significant experimental treatment effect. We measure reversal as the proportion of times the
observational and experimental confidence intervals are fully located on opposite sides of zero.
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5.1.2 Validation Using LaLonde-Style Studies

Next, we conduct an out of sample validation exercise. We compiled a set of 11 LaLonde-style
studies that compare observational estimates to experimental benchmarks from similar settings.?®
For each study we correct the observational estimates and confidence intervals using the bias
estimates from our meta-analysis of all outcomes. To determine which correction to use, we

classify each observational method into two categories:

* Unadjusted comparisons, where no attempt is made in the source paper to adjust for
covariates (e.g., raw difference in means). For these, we apply the correction derived from
the WW bias distribution. (P = 44 comparisons).

¢ Adjusted comparisons, where the source paper explicitly attempts to control for confound-
ing (e.g., matching, regression, difference-in-differences). For these, we apply the correction
derived from the DDML bias distribution. (P = 580 comparisons).

This exercise differs from our earlier leave-one-out analysis in that it is fully out-of-sample: the
LaLonde-style papers come from a different literature and use a variety of observational methods,
whereas our bias distribution is estimated from JPAL and IPA RCTs, mostly on development
themes, and we always use the same observational methods. This is a substantially more
challenging test of our approach.

Figure 6 shows the results of this exercise. Once again our approach performs well with respect
to coverage. When the authors make no attempt to adjust observational estimates, only 14% of
naive observational confidence intervals include the experimental estimate. This proportion rises
to 41% when we apply our correction. Better, but still not great. When the authors do attempt
to adjust for potential confounding, naive observational estimates include the experimental
estimate 57% of the time, suggesting that the adjustments are useful, but do not go far enough.
Finally coverage jumps to 94% when we apply our correction, tantalizingly close to the 95% goal.
Again, this improvement in coverage rates comes at the cost of power, which drops to about 5%.
Finally, and in distinction to the within sample test, we see an important reduction in reversals.
Concentrating on the adjusted comparisons, 5% of the cases in which the experimental estimate is
statistically significant the observational approach reports a statistically significant result of the
opposite sign when naive confidence intervals are used. Our approach removes all of these cases.

Our method performs well in practice, particularly when the observational estimate includes
an effort to address selection bias. While the correction still improves inference for unadjusted
methods, its real strength appears when applied to estimates that already account for covariates.
This supports the idea that the distribution of bias is more stable across studies once observable

confounding has been addressed.

2LaLonde (1986); Heckman and Hotz (1989); Dehejia and Wahba (1999); Smith and Todd (2005); Friedlander and
Robins (1995); Heckman et al. (1998a); Arceneaux et al. (2006); Bléhaut and Rathelot (2014); Agodini and Dynarski
(2004); Dehejia and Wahba (2002); Ferraro and Miranda (2014)
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Figure 6: Errors and coverage rates for corrected and uncorrected observational LaLonde-type
estimates

Note: This figure presents estimates of the performance of corrected and uncorrected confidence intervals for observa-
tional estimators on the sample of eleven LaLonde-style studies described in the text. Corrected observational estimates
apply the correction in Equation (1) using parameter estimates fi, ¢, and t from Panel D in Table 1. We measure
coverage, power, and reversal as in Figure 5.

5.2 Combining Experimental and Observational Estimates in a Single Meta-Analysis

There is currently no agreed upon approach to combine observational and experimental estimates
in a single meta-analysis. Standard meta-analytic approaches report a weighted sum of estimates,
where the weight is inversely proportional to the square of the estimated standard error. This
creates two problems for an analysis that includes both observational and experimental estimates.
First, if observational studies are biased, so will be the meta-analysis. Second, if observational
studies have artificially small standard errors, they will receive too much weight. At the same
time, throwing out observational estimates is a waste of potentially valuable information. Our
proposed approach is to bias-correct the observational estimates, inflate their variances by 72,
and then combine all estimates in (almost) the standard way. We nevertheless have to carefully
account for the estimation error of our bias-correction factor, and for the fact that it gives rise to
correlation across the bias-corrected estimates. In Appendix A.3, we introduce a FGLS estimator
which combines observational and experimental estimates optimally, and prove its consistency, as
well as the consistency of our proposed estimator of its variance.

We illustrate our approach using the meta-analysis from Porat et al. (2024), which studies
the effect of interventions designed to prevent sexual violence by targeting attitudes, beliefs,
and knowledge. We focus on the most important and policy-relevant outcomes: perpetration
(engaging in sexual violence), victimization (being the victim of sexual violence), and bystander
intervention (helping a person who is being victimized). We also exclude quasi-experimental
studies due to definitional ambiguity and lack of a clear correction strategy. After these restriction
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we have 89 estimates of impact: 63 experimental and 26 observational.

Figure 7 presents the results of four meta-analyses on this data set. The most striking result
appears for perpetration, arguably the most policy relevant outcome. Looking at experimental
estimates alone does not reveal a statistically significant change in perpetration. A policy maker
facing this set of results is likely to find them weak. Looking at observational estimates alone
suggests a borderline significant impact, but a policy maker may well question whether these
estimates are biased. What type of person selects into an anti-sexual violence program? We might
reasonably worry that the worst offenders will not take up the program, upwardly biasing these
estimates. Naively combining experimental and observational estimates suffers from the same
concern, especially because it overweights the observational studies.

Combining results using our correction leads to a clear policy lesson. The resulting estimate is
statistically significant: 0.12 4+ 0.10 and positive, indicating that interventions can be designed to
reduce perpetration. Our correction contributes by pushing the observational estimates upward,
and downweighting them relative to the experiments. Notably, even when we set fI = 0, isolating
the weighting effect, the result is nearly identical.

This example illustrates a key insight: while our method often results in wider intervals and
lower power for individual estimates, it can increase power in a meta-analytic context by allowing
more honest use of noisy observational data. It offers a way to synthesize diverse evidence without
compromising a desire to establish causal effects.?

5.3 Choosing Between an RCT and Observational Study

Our methods also give an interesting way to compare between an RCT and observational study.
Suppose that a policy maker has the option to assemble data for an observational study, or
to conduct an RCT. For simplicity we assume the potential observational study has an infinite
sample size and therefore its effective standard error will be 0.207, corresponding to our preferred
“aggregate primary” estimate. We ask: how large would the potential RCT need to be to deliver
more statistical power (precisely: a smaller expected standard error)?

Figure 8 plots a few scenarios, assuming an individually-randomized RCT with 50% assigned
to treatment.”> With 100% compliance, an experimental sample size of just 93 is sufficient to
achieve the same expected standard error on the TOT estimate as an infinite-N observational
study. The required sample sizes increase if there is imperfect compliance in the RCT. For example,
with 25% compliance the RCT would need 1487 observations to dominate. Still, 1487 < oo;
more seriously this is still a relatively modest trial when compared to recent published papers in
economics. Overall, while conducting RCTs is of course costly, so is the low power that comes

X Gechter (2022) proposes a Bayesian method for combining experimental and observational evidence stemming
from different studies, unlike in our case. His approach has to correct not only for selection bias in observational
studies, but also for potential site-selection bias in RCTs. It requires an instrument for the context in which experiments
are conducted. In contrast, our approach is simpler but rests on a stronger assumption of no site-selection bias.

25For sample size N, fraction P treated, and compliance rate C, we calculate the expected standard error on the

experimental TOT estimate as %1 / WSD (Duflo et al., 2007).
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Figure 7: Meta-analysis on sexual violence: corrected meta-analytical estimates

Notes: Data is from Porat et al. (2024), focusing on behavioral outcomes with effects measured either using Experimental
or Observational methods. All refers to all behavioral outcomes combined, Bystander measures whether individuals tend
to act when they witness sexual violence perpetrated on others, Perpetration measures whether individuals report having
perpetrated acts of sexual violence, and Victimization measures whether individuals report having been victims of sexual
violence. Each point is a meta-analytical estimate (with associated 95% confidence interval based on standard errors
clustered at the study level). Meta-analytical estimates combine either all the Experimental estimates (Experimental), all
the Observational estimates (Observational) or both Observational and Experimental estimates (Combined). Correction
indicates whether individual Observational estimates are corrected with our proposed approach before being included
in the meta-analysis (Yes), or not (No). We show results for the IND_PRI correction, which corresponds to the sample of
outcomes produced by the study. We also show results where we set the mean selection bias estimate fi to zero (Yes
(mean=0)). Experimental and Observational estimates are obtained using Random Effects meta-analysis estimated with
Restricted Maximum Likelihood, using the same specification as the original authors. The combined estimates are
obtained using the FGLS estimator introduced in Appendix A.3.

26



from uncertainty about bias in observational studies.
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Figure 8: Required experimental sample size to match effective standard error of an infinite-N
observational study

6 Robustness

The three use cases above show the value of our approach: confidence intervals are more accurate;
meta-analytic precision can be improved; and power comparisons can be used to decide between
an RCT and an observational study. These applications, however, all show that our confidence
intervals come with a stark power reduction for observational approaches. In this section we test
whether we can avoid this power loss by relaxing our two crucial assumptions: exchangeability
and Normality.

6.1 Exchangeability Violations due to Predictable Variation in Bias

Our meta-analysis may be mixing together studies with predictably heterogeneous biases, artifi-
cially inflating estimates of bias variability. For the sake of illustration, suppose we knew that
observational estimates were positively biased by 0.5 standard deviations for half our studies, and
negatively biased by 0.5 s.d. for the other half. Mixing them together in our meta-analysis, we
would erroneously conclude that each study draws its bias from a distribution with mean zero
and large variance, and our bias correction would result in wide corrected confidence intervals. If

we could predict, ex-ante, which study belonged in which set we could avoid this outcome.?®

26We tried two approaches to this prediction problem, one based on regression trees using a set of observable study
characteristics, and the other based on LLMs. We were unable to generate trees (indicating a lack of predictable
heterogeneity), so we report here only our LLM based approach.
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Economists tend to believe that they can reason about bias direction in a given setting, based on
theory and contextual knowledge, and referee reports and seminar discussions often center on this
type of discussion. If so, we could use expert knowledge to divide studies into predicted-positively
and predicted-negatively biased and this should reduce the unexplained variation.

There are, however, reasons to be skeptical. It is often easy to come up with alternative
stories that predict the exact opposite direction of selection: do business people take out credit
because they are in trouble and unlikely to pay (Stiglitz and Weiss 1981), or because they have
high performing projects (De Meza and Webb 1987)?? If bias direction is not predictable, then
conditioning on expert predictions will neither reduce variability nor improve power.

We use our data to adjudicate between these two views. In principle we could elicit predictions
via an expert survey of academics or practitioners a la DellaVigna and Pope (2018). However, our
setting is different from the usual application, which asks experts to predict a small number of
parameters from a given study. We have over fifty studies, some containing multiple programs,
each of which is described in a long paper. The burden on fellow researchers” time of such a
survey would be substantial.

Instead, we turn to a novel form of expert, namely a large language model (LLM), OpenAl’s
GPT 4.1. There are two good reasons to expect a frontier LLM to mimic expert human behavior
in predicting bias in our setting. First, frontier LLMs are trained on a vast corpus of text data,
including enormous amounts of scientific research (Bubeck et al., 2023), and, presumably, many
instances of experts reasoning about observational bias.?® Indeed, the training data likely include
some or all of the papers that we analyze, though they do not have access to our bias estimates
since those do not appear in the original papers nor have we reported them at the study level.
Second, recent studies have shown empirically that LLMs can match or surpass human experts in
predicting neuroscience and behavioral science results, as well as more general prediction tasks
(Luo et al., 2025; Lippert et al., 2024; Schoenegger et al., 2024).

To get LLM predictions, we manually coded a precise description of each program in our
sample, and a precise description of the population that was eligible to take up that program.
We then asked for a binary prediction: would a member of the study population that selected
into the program be expected, in general, to have better or worse outcomes, in the absence of the
intervention, than those who did not select in. We focus on an “in general” prediction to align with
our aggregated measures of bias.

We designed four prompts to elicit LLM bias predictions (see Appendix E.2 for the full text).
We always provided detailed descriptions of program and population. We either asked the model
to predict selection unconditionally (WW), or after conditioning using DDML on a rich set of
observables, and we varied whether we supplied the text of the original research paper or not.
Access to the paper might aid prediction, whereas prediction without access was intended to

mimic an expert trying to predict bias before deciding whether to conduct a study (with the

?’The argument is akin to concerns about the “garden of forking paths” that motivate pre-registration of studies.
28OpenAI does not disclose the training datasets used (OpenAl, 2023) but it is estimated that GPT-4 (precursor to 4.1)
was trained on around 4.9 trillion words of text, see https://epoch.ai/data/ai-models (accessed 17 Oct. 2025)
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obvious caveat that the paper may be in the training data!)?’

We split our sample into predicted-positive and predicted-negative bias studies, then perform
a separate ‘aggregate primary’ meta-analysis for each. Table 2 presents the findings. The results
show that the LLM does have some ability to separate studies by bias direction, but it is far from
perfect. Predicted-positive biases are indeed larger (more positive) on average than predicted-
negative biases. But mean bias is still negative in all subsets, and is never statistically significantly
different between pairs of subsets. The LLM seems to overestimate the prevalence of positive
biases in general: 23 out of 51 point estimates of bias were negative, but the LLM predicts that
the vast majority of studies will be positively biased (44-45 out of 51 when no paper is provided).
Providing the research paper causes the LLM to be slightly less likely to predict a positive bias
(38-39 out of 51).

Table 2: Meta-analysis Split by Bias Predictions from GPT 4.1

Predicted negative bias  Predicted positive bias

Overall No paper With paper No paper With paper

Panel A: WIW

Mean (1) -0.030 -0.097 -0.109 -0.020 -0.003
SE (0,) (0.044) (0.088) (0.073) (0.051) (0.053)
Standard deviation (7)  0.251 0.183 0.185 0.268 0.268
Effective SE 0.255 0.203 0.199 0.273 0.273
Num. obs. 51 7 12 44 39
Panel B: DDML

Mean (1) -0.025 -0.069 -0.036 -0.020 -0.025
SE (0y) (0.038) (0.091) (0.063) (0.043) (0.049)
Standard deviation (t)  0.204 0.174 0.155 0.216 0.235
Effective SE 0.207 0.196 0.167 0.221 0.240
Num. obs. 51 6 13 45 38

Notes: We re-estimate our meta-analysis for aggregate primary outcomes on subsets of the data where
GPT 4.1 predicted negative bias (“adverse selection”) or positive bias (“advantageous selection”), either
unconditional (WW) or conditional on observables (DDML). For “No paper” estimates we provided the
LLM with a detailed description of the program and eligible population. For “with paper” estimates we
additionally provided the original research paper within the prompt.

20ur prompts included two hypothetical examples of reasoning about positive and negative bias, neither of which
would match any individual study in our database (an example of “few-shot learning”). Although the mechanics
of selection bias are a bit more subtle in encouragement designs, we used the same prompt for eligibility and
encouragement design studies. LLMs exhibit inherent randomness in their responses, captured by the “temperature”
parameter. We set temperature to 1 (the default) and repeated each prompt 11 times, determining the binary prediction
by majority vote. We observed a high degree of concordance between predictions for a given prompt: 99% of predictions
were unanimous. We also asked the model to supply a one-sentence rationale for each of its predictions. We found
these rationales to be sensible, and similar to how a social scientist might reason about bias. For example: “Takers are
more likely to be individuals with greater self-control, higher financial awareness, or stronger intrinsic motivation to
save, which means they would have higher counterfactual welfare than non-takers even in the absence of the program.”
“High-risk men with fewer opportunities and lower counterfactual welfare are more likely to be motivated to take up
the program, even after conditioning on observables.”
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Leveraging LLM predictions does not uniformly reduce the effective standard error. It goes
down for the predicted-negative, but up for the predicted-positive set. In the best case scenario
for power, the subset of studies that the LLM predicts will have a negative bias after DDML when
provided with the paper, the effective standard error drops from 0.207 to 0.167. In other words, a
policy maker whose study is also predicted to be negatively biased and chooses to focus on this
subset will experience a modest but probably not transformative power gain.

6.2 Exchangeability Violations due to Inclusion of Poor-Quality Bias Estimates

We assume exchangeability across all our studies, but a subset of them may produce noisy or
biased estimates of bias. For example, we have already seen that observational studies that make
no attempt to control for selection (WW estimates) exhibit more variability in bias. Here we
explore whether excluding potentially lower quality studies changes our estimates, and allows for
an increase in power for observational methods.

We use several proxies for quality, and the results are presented in Table 3. We discuss each in
turn, but the bottom line is that effective standard errors remain large and power remains low

even when we concentrate on the best quality studies.

Table 3: Removing Potentially Poor-Quality Bias Estimates

Full sample Eligibility 1st stage # covariates SUTVA Exclusion

Panel A: WV

Mean (f1) -0.030 -0.021 -0.032 -0.038 0.025 -0.036
SE (0,) (0.044) (0.051) (0.054) (0.057) (0.078) (0.051)
Standard deviation () 0.251 0.235 0.231 0.231 0.275 0.197
Effective SE 0.255 0.240 0.237 0.238 0.286 0.204
Num. obs. 51 35 25 25 18 25
Panel B: DDML

Mean (j1) -0.025 -0.035 -0.036 -0.027 0.025 -0.034
SE (,,) (0.038) (0.042) (0.044) (0.045) (0.059) (0.043)
Standard deviation (7) 0.204 0.176 0.178 0.159 0.181 0.159
Effective SE 0.207 0.181 0.184 0.165 0.190 0.164
Num. obs. 51 35 25 25 18 25

Notes: We re-estimate our meta-analysis for aggregate primary outcomes on subsets of the data that might in principle
increase power by removing poor-quality estimates of bias. “Full sample” reproduces our primary estimates for
comparison. “Eligibility” includes only eligibility-design studies (which identify TOT, the policy-maker’s parameter of
interest). “1st stage” includes only studies with an above-median F-statistic in the experimental first stage (reducing
concerns about biased experimental estimates and standard errors). “# covariates” includes only studies where the
number of covariates available to the DDML algorithm is above the median in our sample (where we hope to better
capture selection on observables). “SUTVA” includes only studies where the experiment was individually randomized
(from which we infer the researchers are not concerned about SUTVA violations). “Exclusion” includes only studies
where the original authors report a specification that instruments for takeup with assignment (from which we infer they
believe the exclusion restriction is satisfied).
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6.2.1 Encouragement Versus Eligibility Designs

Our hypothetical policy maker cares about the bias in her estimate of the treatment-on-the-treated
(TOT). As we showed in section 2, encouragement-design studies instead recover the bias in the
treatment effect on compliers (TOC). If the bias distribution for TOC differs from that for TOT,
mixing them could increase variance. Table 3 shows that if we exclude encouragement designs, the
bias distribution for eligibility designs exhibits slightly less variation, but not enough to change
our qualitative conclusion: the effective SE falls from 0.207 to 0.181.

6.2.2 First Stage

Our experimental estimates use instrumental variables and some studies may have a weak IV
problem leading to bias estimates that are biased toward the OLS estimate, with spuriously
small standard errors (Staiger and Stock, 1997). That variation then may get misattributed to
fundamental variation in bias. Note that we already pruned all studies where the first stage F-stat
was less than 10 (a standard cutoff for weak IV), but we further explore the issue by re-estimating
our meta-analysis on the sample of studies with above-median first stage F-statistics. This does
reduce our estimate of %, but the change is small with the effective standard error falling to 0.184.

6.2.3 Limited Regression Covariates

If a study in our sample contains few or poor-quality covariates, we would not expect DDML to
be able to remove selection bias. That might lead us to overestimate the bias faced by a policy
maker who could collect rich covariates for their observational study. We therefore re-estimate the
meta-analysis for studies with an above-median number of covariates available (see Appendix
Table D.1 for descriptives). Unsurprisingly this has minimal effect on the WW bias variance, but
does reduce T after applying DDML, lowering the effective SE by around 20%, to 0.165.

We performed a second exercise, where we restrict attention to regression specifications in
which the pre-treatment (“lagged”) value of the outcome variable is available as a regression
control, i.e. an ANCOVA specification (McKenzie, 2012) (individual-outcome specifications only).
Surprisingly, we find that this has effectively no impact on the effective SE.

6.2.4 Failure of Identification

Estimation of TOT or TOC requires identification assumptions that may be violated (Section 2).
We concentrate on two. Our experimental estimates will be poorly identified if the exclusion
restriction fails. Both experimental and observational estimates will be biased if SUTVA fails.
We can construct indicators for whether the researchers have either of these concerns. First,
for a subset of studies the RCT design is clustered, indicating that the researcher was concerned
about spillovers and breaches of SUTVA. Excluding these studies has a very small impact on

estimated effective standard error (it drops to 0.190). Second, we check whether the original study
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authors reported estimates in which they instrumented for takeup using treatment assignment (i.e.
estimating TOT/TOC). If not, we infer they were not confident the exclusion restriction held in
their experiment. Keeping only the studies where an IV estimate was reported (suggesting more
confidence in the exclusion restriction), we find a 20% reduction in the effective standard error, to
0.164.

Overall, we see no evidence that power can be significantly improved by removing lower

quality estimates of bias studies.

6.3 Violation of the Normality Assumption

Beyond exchangeability, the main assumption in our meta-analysis is Normality of the observa-
tional bias distribution (condition 2). If violated we may draw incorrect conclusions about the
mean and variance of bias.

To test this assumption, we estimate the distribution of observational bias nonparametrically.
In our data, we observe a combination of true bias and sampling noise: B = B, +vs. We
can assume that the sampling noise vs is normally distributed N (0, (712;,5) as B; = p+ 15, and
hence is the sum of underlying normally distributed estimators. Extracting the distribution
of B leads us to a deconvolution problem with a nonstandard component: while Normal, our
error term is heteroskedastic. We use the estimator from Delaigle and Meister (2008) to account
for this heteroskedasticity. The estimator is coded up by Wang and Wang (2011) and we use
optimal bandwidth selection via bootstrap and a rule-of-thumb starting value to find the optimal
bandwidth (specifically our starting value is S7/° x | /67 + ©2).

Figure 9 plots the nonparametrically estimated density together with the Normal distribution
with average bias and variance from our meta-analytic results.

Using all individual outcomes, we obtain relatively overlapping distributions and, if anything,
the variance of the parametrically estimated Normal distribution appears to be smaller. For
the aggregated outcomes, we notice that the Normal distribution is much tighter than the
nonparametrically estimated distribution, with the caveat that this is based on just 51 datapoints.
In both cases, our non-parametric distribution appears reasonably symmetric and bell-shaped.

We test more formally the shape of the deconvolved estimators by estimating their skewness
and kurtosis. Table 4 shows estimates of these parameters, obtained using the composite Simpson’s
rule for irregularly spaced data, after a change of variable to project the distribution from R
to [0,1]. We show the results for the whole support of the distribution as estimated by the
deconvolution procedure and with the support restricted to [—2,2] to avoid giving too much
influence to estimation errors far away in the tails. After filtering, most of the deconvolved
distributions have skewness and kurtosis quite close to 0 and 3, the values corresponding to a
Normal distribution. In sum, we conclude that our parametric Normality assumption appears
reasonable, and that relaxing it would only lead us to conclude that uncertainty about bias is even

greater.
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Figure 9: Nonparametric estimation of the bias density for the DDML estimator.

Note: This Figure shows nonparametric estimates of the distribution of the bias of observational estimators. The left
panel uses all individual outcomes. The right panel uses the aggregated primary outcomes. The solid line represents
the nonparametrically estimated density via Delaigle and Meister (2008)’s heteroskedastic deconvolution estimator.
The dashed line represents the Normal density with average observational bias fi and standard error T from the meta
analytic results.

6.4 Other Assumptions
6.4.1 Incorrect adjustment of multi-outcome studies.

Our “aggregate” specifications include just one bias estimate per study. However, our “individual”
specifications estimates from multiple outcomes and/or programs per study. To adjust for intra-
study correlation in outcomes, we calibrate an intra-cluster correlation parameter which we set to
0.6, following existing literature (see Section 2.5). If our estimates are sensitive to this parameter,
we might overestimate (or underestimate) 7. We experiment with adjusting the parameter to 0.5
or 0.7 in Appendix table D.3; this does not meaningfully change the results.

6.4.2 Incorrect standard error calculations.

When computing the standard errors of our bias estimates we treat the experimental and obser-
vational estimates as independent. In reality they are likely to be correlated, in which case our
standard errors will be biased. We discuss this point further in Appendix B.2, and demonstrate

using a bootstrap approach that this does not matter in practice.

6.4.3 Site Selection Bias and Publication Bias

Our exchangeability assumption requires that the policy maker’s observational study of interest
is drawn from the same population as the set of studies we use for estimation; this would fail if
there is selection into conducting an RCT (site selection bias) or publishing the data (publication

bias). Appendix E.3 discusses how these might influence our estimates.
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Table 4: Estimated moments of the deconvolved distribution of selection bias

Filtered Mean Sd Skewness Kurtosis

Panel A: Aggregated primary outcomes

N -0.10 0.68 -1.85 14.38

Y -0.05 0.55 -0.12 2.83
Panel B: Aggregated all outcomes

N -0.03 0.57 -0.96 5.76

Y 0.00 0.50 -0.27 3.21
Panel C: Individual primary outcomes

N 0.00 0.43 -0.45 5.36

Y 0.01 0.42 -0.12 3.40
Panel D: Individual outcomes

N -0.01 0.44 24.49 1637.19

Y -0.01 0.31 -0.37 5.06

Notes: This table presents estimates of features of the deconvolved density distributions
of selection bias. All estimates are computed using the composite Simpson’s rule for
irregularly spaced data, after a change of variable to project the distribution from R to
[0,1]. We show the results for the whole support of the distribution as estimated by the
deconvolution procedure (Filtered=N) and with the support restricted to [—2,2] to avoid
excessive influences from estimation errors in the tails (Filtered=Y). Mean reports the value
of the first moment. Sd reports the value of the standard deviation, computed as the
square root of the second centered moment. Skewness reports the value of the skewness,
computed as the third standardized moment. Kurtosis reports the value of the kurtosis,
computed as the fourth standardized moment.

7 Conclusion

Observational studies are likely to remain a mainstay of program evaluation. We study the bias
in these studies, with an emphasis on quantifying uncertainty, which is often treated as having
unknown size and magnitude. We show that we can construct corrected observational confidence
intervals with good nominal coverage, which appropriately account for uncertainty about bias.
We find substantial uncertainty, which implies that observational studies have low power to detect
program impacts of a policy-relevant size: even an infinite-N observational study has an effective
standard error equal to around 0.2 standard deviations of the outcome variable.

It is reasonable to question whether the heterogeneous sample of studies that underlie our
estimates can provide generalizable evidence about the distribution of bias. But, we show that
our correction has close to nominal coverage both within our sample (using a leave-one-out
approach), and out of sample, applied to a large number of estimates from LaLonde-style studies
in very different settings. The correction performs best when applied to point estimates that
have already been adjusted for selection on observables, supporting a notion of “conditional
exchangeability” whereby the predictable component of bias can differ a lot between settings
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while the unpredictable component follows a common distribution.

Our correction is useful for three primary exercises: it can be used to bias correct individual
studies, generating honest confidence intervals that include appropriate uncertainty about bias.
It can be used to bias correct and increase the precision of collections of studies, combining
observational and experimental estimates in a single meta-analysis. And it can be used in ex-ante
power calculations to inform the decision to conduct an RCT in a new setting.

A couple of auxiliary findings stand out to us. We provide useful evidence that Double-
Debiased Machine Learning performs better than a leading alternative (Post Double Selection
LASSO), which sometimes decreased precision relative to a regression without covariates. And
we provide a novel test case for using machine experts (LLMs) as stand-ins for human experts in
a bias-prediction exercise (contrasting the more standard case of predicting headline findings).
The LLM behaved like a human expert: it provided coherent predictions, alongside persuasive
rationales, and to a modest degree separated positive and negative biases (albeit substantially
overestimating the prevalence of positive biases). Nevertheless this did not lead to any meaningful
improvement in the statistical power of bias-corrected estimates.

Future research can build on our work in a couple of ways. In principle there might emerge
better ways to predict bias in our sample, for instance perhaps an even more-powerful Al will do
better at predicting bias, though there is a risk of overfitting (with enough exploration we could
certainly find a subset of point estimates that yield smaller &, and ts). Our sample of imperfect
compliance RCT datasets can also grow in future, and a sufficiently large sample might open
the door to estimating richer bias-prediction models. More generally, we have demonstrated a
disciplined, hands-off approach to assessing bias of different methodologies that could be applied
in new settings. For instance, to quasi-experimental studies in which identification of the non-RCT
results hinges on a different set of identification assumptions than in observational studies.
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A Theoretical results

Here we formally prove the main theoretical results in the text. We show how to estimate the bias of
observational estimators using ICRCTs, prove asymptotic validity of our bias-adjusted confidence
intervals, and prove consistency of the Feasible Generalized Least Squares (FGLS) estimator we
propose to combine experimental and observational estimates in a single meta-analysis.

A.1 Identifying Observational Bias using ICRCTs

In this appendix we show how to identify observational bias for a well defined population for
both of our study types: eligibility designs and encouragement designs.

First some notation. In randomized experiments with imperfect compliance, individuals
i =1,.., N receive a randomized offer R; € {0,1}. They can then choose to take-up a program
or not. The randomized offer divides the sample into two groups with R; = 1 if the individual
is randomized into the treatment group and R; = 0 for the control. We denote program take-up
D; € {0,1} where D; = 1 if the individual chooses to participate and D; = 0 otherwise. If D;
were equal to R; we would have perfect compliance. We denote the potential participation given
treatment group by D! and we let Y be the potential outcome given treatment and take-up.

Below we use subsets of the following classical assumptions:

Assumption 1 Assumptions for Valid RCTs>

SUTVA: (Y}, Y?) L Dj fori # j.
Independence: (Y¥,D}) L R, ¥(d,r) € {0,1}%.
Exclusion restriction: Yi‘” = Yid, v(d,r) € {0, 1}2.
First Stage: E(D} — DY) € (0,1].

Monotonicity: D} — D? > 0 for all .

MICIRCENS

Assumption 2 Additional Assumptions for Observational Estimators

1. Conditional Independence: (Y},Y?) L D;|X;, R; =, Vr € {0,1}.

30In addition, because we restrict to ICRCTs, it must be that E (Dl1 — D?) < 1, but this is not an identification condition
so we leave it out of the below statements.



2. Common Support: 0 < P(D; =1|X;,R; =r) <1, Vr € {0,1}.

Given the exclusion restriction, observed take-up is a function of treatment assignment D; =
D!R; 4+ DY(1 — R;), and the observed outcome is a function of the actual program participation
Y, = Y}Dl‘ + Ylo(l — Dl‘).

A.11 Encouragement Designs

We show how to generate observational and experimental estimates of average treatment effects
for the same sub-population (the compliers). In an encouragement design everyone in treatment
and control can choose to participate, but the treatment receives an encouragement to do so. To
use this design, we require imperfect compliance in both treatment arms: P(D; = 1|R =r) > 0,
r € {0,1}. As is well known, there are four potential groups of subjects: (i) always takers (AT) are
individuals who always choose to participate regardless of randomization status (D} = DY = 1);
(ii) never takers (NT) are individuals who never participate regardless of randomization status
(D} = DY = 0); (iii) compliers (C) comply with the manipulation - they participate if they are
randomized in and they don't otherwise (D} — DY = 1); and (iv) defiers (D) are individuals who
do the opposite of what the encouragement suggests (D} — DY = —1). We use the notation T; to
refer to these groups, where, for example T; = C refers to the complier group.

Under the classical assumptions SUTVA, Independence, Exclusion, First Stage and Monotonic-
ity, the experimental Wald estimand

TOCEXP _ E[Yi[R; =1] - ©)
D; =1R;=1)

recovers a local average treatment effect LATE = E[Y} — Y?|D} — D? = 1]. We refer to this as

the treatment on compliers, or TOC in the text to differentiate it from a different estimand, the

treatment on the treated. The notation TOCEXP refers to an experimental estimand and we will

denote non-experimental, or observational, estimands that conditions on X by TOT)? BS 'We denote

by TOTO5S the naive observational estimand that does not condition on any covariate.

In order to form an observational estimand, note that we can build two separate observational
estimands, one in the treated group (TOT)? B51) and one in the control group (TOT)? 50y One
of our contributions is to show that, for encouragement designs, a Wald-like combination of
the observational estimand from each treatment arm recovers the LATE under the additional
assumptions of conditional independence and common support. As is well known, under these
assumptions, it is possible to recover an estimate of the treatment on the treated in each treatment
arm TOTY?®" = E[E[Yi|X;,D; = 1,R; = r] — E[Y;|X;,D; = O,R; = 7]|D; = 1,R; = r] = TOT" =
E[Y! — Y?|D = 1,R = r]. We propose to combine these estimates in a Wald-type estimand

TOTLE! Pr(D; = 1|R; = 1) — TOT®? Pr(D; = 1|R; = 0) -
Pr(D; = 1|R; = 1) — Pr(D; = 1|R; _o) ‘

TOCYBS =



Theorem 1 (Observational Estimand of LATE) Under Assumptions 1 and 2:
TOCB® = E[Y! — Y?|T; = C] = LATE

Proor: First note that the observational estimand on the treatment arm is the sum of the
treatment effects for the always-takers and the compliers weighted by their respective proportions:

TOTYP! = E[Y! =YD, = 1,R; = 1]
= E[Y! — Y?|T; = AT]Pr(T; = AT|D; = 1,R; = 1)
+E[Y! = YV|T; = C]Pr(T; = C|D; = 1,R; = 1),

where the second equality comes from Independence and Monotonicity. Now let us consider the

proportions of each type conditional on treatment arm and participation status:

Pr(T; = ATAD; =1|R; = 1)
PI‘(DZ' = 1|R1' = 1)

_ Pr(Ty = AT|R; = 1)

~ Pr(D; =1|R; =1)

_ Pr(D; = 1|R; = 0)

~ Pr(D; =1R; =1)’

Pr(TZ- = AT|D1 = 1,R1‘ = 1) =

where the first equality comes from Bayes rule, the second from the fact that D! = DY = 1 imply
D; =1 and the third from Monotonicity and Independence. Using the same approach, we have:

Pr(T; =CAD; =1|R; =1)
Pr(D; = 1|R; = 1)

_ Pr(T; =C|R; =1)

- Pr(D; =1|R; = 1)’

Pr(T; = C|D; =1,R; =1) =

where the first equality uses Bayes rule and the second equality uses the fact that D! — DY = 1
implies D; = 1 when R; = 1. Under Monotonicity and Conditional Independence, we also have:

TOT)({)BS,O = E[Y! = Y°|D; = 1,R; = 0]
= E[Y! — Y)|T; = AT).

Combining the formulas for TOT)? BS1 and TOT)? B50 the numerator of the TOC{B® estimand in



equation 6 is:

TOTOPS Pr(D; = 1|R; = 1) — TOTO®0 Pr(D; = 1|R; = 0)
— E[Y! = YT, = C| Pr(T; = C|R; = 1)
+ E[Y! = Y°|T; = AT]Pr(D; = 1|R; = 0)
— E[Y! = Y°|T, = AT] Pr(D; = 1|R; = 0)
= E[Y} = Y?|T; = C]Px(T; = C|R; = 1).

Finally, Monotonicity and Independence imply that:
PI‘(Ti = C|Rl = 1) = PI’(Di = 1‘R1‘ = 1) - PI‘(DZ‘ = HRZ' == O),

which proves the result. m
Theorem 1 implies that we can generate observational and experimental estimands which,
under Assumptions 1 and 2 should be equal to each other. We use as estimands of observational

bias on compliers the difference between the observational and experimental estimands of TOC:

TOCOBS — TOCEXP = $BC
TOCYQBS — TOCEXP = BCy.

Where SBC stands for selection bias on compliers and BCx stands for observational bias on

compliers after covariate adjustment. In section 2 we refer to these term simply as B.

A.1.2 Eligibility Designs

In an eligibility design, the control group are prevented from participating.*® We can form
an experimental estimand TOTFX? based on Equation 6 with P(D; = 1|R; = 0) = 0 and a
single observational estimand on the treatment arm TOT985 = TOTO51. 1t is well known that
TOCEXP = TOTEXP = TOT, the Treatment on the Treated (TOT = E[Y! — Y?|D; = 1]) under
Assumption 1 and that TOTQB 51— TOT under SUTVA, Assumption 2 and the fact that D; =1
implies R; = 1 in this setup. We use as estimands of observational bias on the treated the
difference between the observational and experimental estimands of TOT:

TOTOB! — TOTEXP = SBT
TOTP! — TOTEXP = BTx.

Where SBT stands for selection bias on the treated and BT stands for observational bias on the

treated after covariate adjustment. Again, in section 2 we refer to these terms simply as B.

31 There is also a reverse eligibility design case where Pr(D; = 1|R; = 1) = 1 and Pr(D; = 1|R; = 0) > 0 (i.e. there is
perfect compliance in the treatment group but imperfect compliance in the control group) but none of the RCTs we use
in this paper follow this design.



A.2 Asymptotic Validity of Bias-Adjusted Confidence Intervals

We consider a policy-maker interested in the treatment effect on the treated, TOT,, for a new

study p. The policy-maker observes an observational estimator TOT,,  derived from a sample
of size n,, with estimated sampling noise (ATEZ,p. To construct a confidence interval, we rely on

historical data from S independent studies to estimate the distribution of the observational bias.

Assumption 3 (Asymptotic Normality of Observational Estimator) For the policy-maker’s study
p, there exists a finite constant V,, , > 0 such that, as n, — oo,

_——OBS d
Wap(TOTp —TOT,?BS) 2 N(0,Vep),

where TOTF?BS is the probability limit of the estimator (the observational estimand). We also assume that

such that n,o2 LN Ve

there is a consistent estimator 07 op

ep
Assumption 3 follows from the \/N-consistency and asymptotic normality of observational

estimators (Hahn, 1998; Heckman et al., 1998b; Mammen et al., 2016; Chernozhukov et al., 2018).

Assumption 4 (Consistency of Bias Distribution Parameters) Let (ji, £2) be estimators of the mean

and variance of the observational bias derived from S historical studies. There exists a finite constant V;, > 0
such that, as S — oo,

VS(n—u) L N, V).

We also assume that we have estimators (Affl and 2 such that S[Tﬁ LN V,, and 2 LNy >3 Finally, we assume
that T2 > 0.

Assumption 4 posits the v/N-consistency and asymptotic normality of random-effects meta-
analytic estimators. This follows from recasting these estimators as M-estimators and using
classical results (Newey and McFadden, 1994). The last part of Assumption 4 eschews the cases
where 72 is at a boundary. It is fully satisfied in our applications.

Assumption 5 (Exchangeability) The unobserved bias of the policy-maker’s study, B, = TOT,55 —
TOT,, is exchangeable with the biases of the historical studies. Specifically, By, is drawn from the same
distribution:

By =ptmp 1y~ N(O,T)

Assumption 6 (Independence) The policy-maker’s study p is independent of the set of historical studies
used to estimate fi and 2. Consequently, the sampling error of the study ( T0T, - TOTIS) BS), the specific

bias realization (1), and the estimation error of the mean bias (fi — ) are mutually independent.

Theorem 2 (Asymptotic Validity) Under Assumptions 3 through 6, the bias-adjusted estimator
_—~_OBS
TOT, — fi satisfies:

/\OBS ~
TOT, - p-—TOT,

V02, + 12462

5

4 N(0,1),



as n, — oo and S — oco. Consequently, the confidence interval

—O0BS (146 - —
Cl, = |TOT, —p+®! (2> ,/a§,p+72+a§]
has asymptotic coverage probability 6.

ProoF: Decompose the total estimation error as

_—~O0BS _——~_OBS OBS .
TOT, —f—TOT,= (TOT, —TOT,")+ (By—p)— (A —u).

_——_OBS
By Assumption 5, B, — u = 1, ~ N(0, 72). By Assumption 3, 0T, - TOT;QBS is asymptotically

normal with variance ‘Te2,p = V¢p/np. By Assumption 4, fl — u is asymptotically normal with

variance (Tﬁ

Therefore their sum is asymptotically normal with mean 0 and variance

= Vu/S. By Assumption 6, these three components are mutually independent.

V. V,
Vit = 0py + T+ 0 = E’p+rz+?”.
np

Let Vit := 6§p + 124+ 6'5. By the consistency assumptions in Assumptions 3 and 4, Viot LN Viot.
Slutsky’s theorem then implies that as 7, — co and § —

701 _ 4 TOT
i P4 N(0,1).
V Vtot

The stated asymptotic coverage of Cl; follows immediately. m

A.3 A meta-analytic estimator combining experimental and observational estimates

We now consider a meta-analysis combining Kg experimental studies and Ko observational
studies, with K = K¢ + Ky the total number of studies. Let T/O\Tk, ke {l,...,K} = K denote a
set of estimates of the effect of an intervention from K independent studies, with Kgxp C K and
Kops = Kexp C K the corresponding sets of indices of experimental and observational estimates.

We first derive general conditions for a FGLS estimator to be consistent, along with a consistent
estimator of its asymptotic variance. We then check that these conditions are met with our bias
corrected estimator, derive closed forms for the weights, and provide consistent estimators for the

variance components.

A.3.1 A consistent FGLS meta-analytical estimator

Let § be the full vector of estimates and V(i) be their covariance matrix, which depends on

variance parameters iy = (2, 72, (Tﬁ).



Assumption 7 (Linear Model) The data generating process is § = TOT1 + u, where TOT is the true
average treatment effect, 1 is a vector of ones, and u is a zero-mean random vector with covariance V (iy).

Assumption 8 (Asymptotics) The number of studies grows such that K — oo, with the proportion of
observational studies Ko/K — p € [0,1].

Assumption 9 (Consistent Variance Estimation) There exists an estimator § such that || — o 2
0. Furthermore, the estimated covariance matrix V.= V() satisfies |V — V(o) 7 2 0in operator
norm.

Assumption 10 (Non-degeneracy) The information quantity Ag = 1'V (i) ~'1 satisfies Ax — oo as
K — co. This ensures the variance of the optimal GLS estimator vanishes asymptotically.

Theorem 3 (Consistency of FGLS) Under Assumptions 7 through 10, the GLS estimator T/O\TGLS =
(1'V (o)1) _ll/V(I/JO)*ly is the best linear unbiased estimator (BLUE). The Feasible GLS estimator
defined as:

TOTrers = (1'V 1)1V 1y

is consistent for TOT ( T/O\TFGLS P TOT). Moreover, the estimated variance (V1)1 is consistent for

the true asymptotic variance.

Proor: By the Gauss-Markov theorem for the general linear model, the GLS estimator is
BLUE. Combining with Assumption 10, we have that Var(T/O\TGLS) = Al — 0, implying
mcw 2y TOT. The difference between FGLS and GLS depends on the convergence of the
weights. Let W = 1V-11 and W = 1'V(¢y) " '1. By Assumption 9, % — 1’ = 0p(1), which also

proves the consistency of the asymptotic variance. Similarly, the weighted sum of outcomes

converges. Using the decomposition TOTrg s = TOT + (1'V-11)~11'V~lu, and applying the

convergence rates of the quadratic forms, we obtain that the estimation error vanishes. m

A.3.2 Specification of the combined meta-analysis

We specify the model and covariance structure in our proposed meta-analysis combining ex-

perimental estimates with bias-corrected observational estimates. For each experimental study

_—~—EXP
k € Kexp, the estimator TOT,,  is modeled as:
_——EXP
TOT, =TOT+ «x;+ e,

where x; ~ N(0,#2) represents between-study heterogeneity in treatment effects, and ¢, ~

N(0, (Tik) represents sampling error. For each observational study k € Kogs, we apply the bias

—~O0BSc  ——=0BS
correction: TOT) = TOT, —fi. The model for the corrected observational estimator is

therefore: -
— ,C R
TOT, =TOT +xx+ (yx — ) — (A — p) + e,



where x; ~ N(0,#?) is the treatment effect heterogeneity (shared with experimental studies);
x ~ N(0,72) is the random component of the observational bias; (fi — u) ~ N(0, 0’3) is the
estimation error of the mean bias correction; ¢ ~ N (0, Uék) is the sampling error. This implies that
Assumption 7 is verified. Note that Assumption 7 requires that the set of observational studies in
the meta-analysis Kpps is exchangeable with the set of studies in the bias-correction sample, a
generalization of Assumption 5. If there was a systematic bias-component specific to Kpps and
different from p, Assumption 7 would fail and our bias-corrected meta-analytic estimator would
be both biased and inconsistent.

The covariance matrix V of the vector of estimates ¥ is block-diagonal:

\%
v [VeE 0 )

The experimental block is diagonal, Vg = diag (> + ng). The observational block combines a
diagonal block with a common term due to the shared variance 0']%: Voo =D+ Uﬁll’ , where
D = diag(#* + 7% + ng) kekops- Using the fact that the inverse of a block diagonal matrix is the
block diagonal matrix of the inverses of each block, and leveraging the Sherman-Morrison formula
to invert Voo, we derive the normalized GLS weights wy:

1
W fOI‘ k E ]CEXP

1
4 (1+0250)

Wy X
for k € Kogs,

where dy = > + 1% + Uik and Sp = YjeKos d%' The variance of the pooled estimator is therefore:

-1
Var(T/O\TGLS) = < Z ! SO > .

+
2 2 2
keKexp £+ UL’,k 1 + UVSO

This variance term verifies Assumption 10: Y ycic,yp ﬁ tends to infinity as K — oo (since p < 1,
ek
So
1+(7l350
estimates would be inconsistent (even if unbiased): its asymptotic variance would always be

Kgxp — oo as well) while — % Note that a meta-analysis including only observational

bounded below by (7;%. The confidence intervals based on our FGLS estimator would still have
correct coverage in that case, though.

A.3.3 Estimation of each variance component

To compute the FGLS estimator, we simply need consistent estimates of t?, 72> and 0']%. We take 12
and (3’5 from the REML estimator in our sample of bias estimates. We use a method-of-moments

estimator to recover treatment effect heterogeneity 2. Let 67, be the sample variance of all the
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uncorrected TOTy estimates. We define the average within-study variance ¢ as:

N \

R K
A ZAS

Our estimator is > = max (0,62, — 52 — K?(BS t2). We have E[02,] = + Y5, Var(T/O\Tk) =2+

KOBS 72 + 2. The consistency of our estimator follows from the consistency of each individual

est1mator of the variance components.

B Estimators

We first present our observational estimators before explaining how we estimate observational
bias and its precision. For simplicity, since estimation for the encouragement and eligibility design
on each treatment arm follows the same procedure, we denote the experimental estimates that
identify depending on the design either a TOTEX? or TOCEX? as EXP or EXP for the resulting
estimator. For the observational estimate on each treatment arm, we denote the estimands and
resulting estimators on each treatment arm as OBS” and OBS' respectively (with a subscript X if
we condition on covariates). The resulting observational estimator is denoted as OBS estimating
either a treatment effect on the compliers or on the treated depending on the design. We name all

estimates of observational bias B regardless of the design and underlying estimator.

B.1 Observational estimators

We apply three different observational estimators, the first two of which are based on machine-
learning algorithms:
e Post double selection lasso PDSL (Belloni et al., 2014):

1. Lasso regression of D; on X;.
2. Lasso regression of Y; on X;.
3. Run an OLS estimator of Y; on D;, controlling for the covariates selected in both

regressions.

* Double Debiased Machine Learning DDML following Bach et al. (2021) and Chernozhukov et al.
(2018). The Partially linear regression model takes the form:

Y = OBSk * D +go(X) +¢, E(|D,X) =0,
D =mo(X)+V, E(V | X) =0.

The estimation procedure works as follows:

1. Split the sample randomly into k subsamples.



2. Using k — 1 subsamples, use a ranger learner to make the best predictions of Y and D
using X: $o(X) and 1ip(X).

3. Using the remaining subsample, compute Y; = Y; — $o(X) and D; = D; — 11p(X).

4. Using the remaining subsample, perform the partially linear regression of Y; on D;:
obtain C@ X1

5. Repeat the last three steps using different splits of the k subsamples to obtain k estimates
of OBS X k-

6. Average the different estimators: get the DML estimator of OBS'x = + yX OBS’ X k-

Compared to Belloni et al. (2014), Chernozhukov et al. (2018) the method relies on weaker
assumptions through sample-splitting. Intuitively, the effect of the covariates on take-up are
partialled out. The nuisance function is estimated via random forest learner with 100 trees.
We use the DML2 algorithm.

* With-without comparison WW. This is simply a naive comparison of the outcomes of those
who took the treatment against those who did not take the treatment.

1. Run a regression of Y; on D; without including any X; variables.
2. The coefficient on D; is the estimated treatment effect OBS’.

Note that based on this estimator, we can obtain a measure of selection bias (see Appendix
Al).

B.2 Estimates of the bias of observational estimators and their standard errors

W1th e11g1b111ty designs, we obtain, for each study s and outcome o, one observational estimate
OBSOS = OBSlos for each of the three observational methods (DDML, PDSL and WW) along with
their respective standard errors 0035,05.3 We also obtain an experimental estimate EXPOs and its
respective standard error 0gxp s using an IV regression of Y on D using R as an instrument, with
strata fixed effects. For standard errors on both the observational and experimental estimates, we
assume the same covariance structure as the authors of the original papers, i.e. if they cluster their
standard errors, we cluster at the same level, otherwise we use heteroskedasticity robust standard
errors.

With encouragement designs, we obtain two observational estimates @05 and @05 for
each of the three observational methods (DDML, PDSL and WW) along with their respective
standard errors (70351, and OOBSO
obtained on each treatment arm using Equation (7), replacing the population values by the sample

by Oone for each treatment arm. We combine the estimates

values to obtain OBS,s. We estimate the standard error of the resulting estimate 0z ,, by using
the delta method and the fact that, because of randomization, OBS!,; 1. OBSY,, for a given
outcome and study pair.

Finally, we combine our observational and experimental estimates to build an estimate of

32Note that in the main text, we have denoted the standard error of the observational estimate as Oc,0s- We change
the notation in this section to improve readability.
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observational bias Bys = @os — E/)ajos. We estimate the standard error of the resulting parameter

as 0g .o = \/ ‘AT(szs,os + a%XP,os' This assumes independence of the observational and experimental
estimator.

We argue in Appendix E.1 that assuming independence gives a lower bound on £2. We also
provide nonparametric bootstrap with replacement standard errors for the WW and DDML

bias estimators and they are very close to our standard errors. We also considered estimating

the standard errors as 005 = \/ &éBS,os + &%Xp,os — 200Bs,exp, Where 0ops pxp is the estimated
covariance between observational and experimental estimators across outcomexstudy pairs.
Instead of another robustness table, we provide the 2 that we would obtain using that approach

which is indeed much higher than when assuming independence.

C Selecting and screening studies and cleaning data

In this section we describe our selection criteria, search process and data collection for the datasets
we use to estimate the bias. We also describe how we clean data.

C.1 Selection and Screening

We use imperfect compliance RCTs for this project. An imperfect compliance RCT is an RCT
where the randomised manipulation does not perfectly determine program take-up, for instance,
if take-up depends on a choice by the participant(s). In other words, if there is a correlation of
less than 1 between assignment to treatment and take-up of treatment then there is imperfect

compliance. We make a distinction between three types of imperfect compliance RCT:

1. Eligibility designs: RCTs in which there is imperfect compliance in the manipulated group
only. No-one takes up the program in the non-manipulated group and only some of the
members of the manipulated group take up the program.

2. Reverse Eligibility designs: RCTs in which there is imperfect compliance in the non-
manipulated group only. Everyone takes up the program in the manipulated group, but
some of the members of the non-manipulated group also take up the program.

3. Encouragement designs: RCTs in which there is imperfect compliance both in the manip-
ulated and the non-manipulated groups. There is a positive but not 100% take up of the
program in both groups and usually greater take-up in the manipulated group. Designs are
only feasible encouragement designs if take-up of the program can be observed in both the

manipulated and the non-manipulated group.
A study is included in our analysis if all of the following are present:

* Variable(s) measuring the experimental manipulation(s) (e.g. eligibility /encouragement for

a program). Usually these will be binary, if not we transform them into a binary variable.
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¢ Variable(s) measuring take-up of a program of interest. Usually these will be binary, if not
we transform them into a binary variable.
¢ At least one outcome variable that we believe is influenced by the program.

¢ Imperfect compliance with the experimental manipulation in program take-up.

We can use RCTs with any of the three types of imperfect compliance described above and we
can handle imperfect compliance at the individual or cluster level.

Our search domain was all of the datasets from the J-PAL and IPA Dataverses. Our final search
of the two Dataverses was on 3rd August 2022, at which point there were 207 datasets available.

We used the J-PAL and IPA Dataverses for a number of reasons. Firstly, these are amongst the
most prominent organisations that run randomised controlled trials in development economics.
Secondly, these repositories had a large number of studies available on them so we expected to
find many suitable datasets for our project.*’

We scraped the meta-data from all 207 of the studies on both Dataverses. This includes author
names, paper title, year of publication, DOI where available, and so on. After we scrape the
meta-data, each study goes through a three-step screening process from the initial scrape to being
included in our study.

Pre-screening. At Level 1, for each repository, we pre-screen all projects to eliminate those
datasets that are definitely not suitable for our analysis — often non RCT data or RCTs with full
compliance.

Screening. At Level 2, we perform an in-depth screening of the projects that could proceed
from Level 1 to Level 2. The objective of this step is to get an understanding of the information
potentially available in the dataset to a) once again eliminate papers that are not deemed suitable
after further scrutinizing. This could for example happen if the authors do not collect a measure
of imperfect compliance. b) To obtain a set of basic information about the paper such as the
available outcome measures, the randomization and participation variables and other metadata
relevant for Level 3.

Data preparation. The papers that pass Level 2 move on to Level 3. We now collect information
from the dataset itself to prepare the econometric analysis. The goal of this stage is to prepare a
clean dataset for each project where outcome, treatment, treatment uptake and control variables
are stored. This step involves data cleaning (which we describe in more detail in section C.2).
Each project dataset stores the relevant variables in a harmonized way with one row for each
specification ready to be read by our bias estimation code package. During this stage, we notice
that, for some projects, not all inclusion criteria hold. These projects are said to be excluded at
Level 3.

Figure C.1 shows how many studies pass each stage of screening.

330Other repositories we considered included: International Initiative for Impact Evaluation Development Evidence
Portal, DIME data collection (The World Bank), Impact Evaluation Surveys Collection (The World Bank), David
McKenzie’s website, MDRC, Mathematica, REES (within ICPSR), openICPSR, NCES / IES, Head Start Impact Study,
journal websites. These repositories were less well structured and typically less representative of the development
economics literature than the J-PAL and IPA repositories. We plan to use them in future work.
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The data synthesis follows two main steps. Firstly, we clean and merge the raw datafiles
associated with each study to produce an analysis dataset for that file and collate the information
on outcome, treatment, take-up and covariate variables in that dataset. Secondly, we run our
bias estimation code on each of the analysis datasets to produce bias estimates for each outcome-
treatment combination that are later used in the meta-analysis. During this analysis we further
clean the data as described in the next section which leads us to lose some datasets prepared for

analysis.

IPA Dataverse J-PAL Dataverse
RCTs (n = 76) RCTs (n=131)

h

Level 1 screening -
abstract only (n=207)

(.
L Failed L1 (n = 82)

h 4

Level 2 screening -
full paper (n=125)

¥
S

Failed L2 (n = 48) }

k4
Level 3 screening -
data (n=77)

h 4

Ready for analysis -
(n=56)
Analysis dataset -
(n=53)

Figure C.1: Flow diagram of studies passing through our selection process

(.
L Failed L3 (n = 21)

> Failed cleaning (n = 3) }

C.2 Data cleaning

The process for cleaning each dataset is similar. First we download the data from the repository
and identify the names of key variables and store them in a spreadsheet: Outcomes, Treatment
status, Tnke-up measures, Baseline covariates, Strata, Clusters, Weights.

For the outcomes, we use all of the variables that are included in outcome tables in the
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associated paper. For the baseline covariates, we use all possible variables available in the dataset

that are measured before treatment and/or are time-invariant.

We convert the raw data to a single wide dataset by merging and reshaping. We ensure

variables are correctly classified as numeric or categorical. We create dummy variables to indicate

whether baseline covariates have missing values and replace the missing values with the median

for numeric variables or the mode for categorical variables. We use the missingness indicators as

potential controls as well.

C.3 Studies included in the meta-analysis (in alphabetical order by author)

Ambler, K., Aycinena, D., and Yang, D. (2015): “Channeling remittances to education: A field experiment among
migrants from El Salvador,” American Economic Journal: Applied Economics, 7(2), 207-32.
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Ashraf, N., Karlan, D., and Yin, W. (2006): “Tying Odysseus to the mast: Evidence from a commitment savings
product in the Philippines,” The Quarterly Journal of Economics, 121(2), 635-672.
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an export crop adoption and marketing intervention in Kenya,” American Journal of Agricultural Economics,
91(4), 973-990.

Atkin, D., Khandelwal, A. K., and Osman, A. (2017): “Exporting and Firm Performance: Evidence from a
Randomized Experiment,” The Quarterly Journal of Economics, 132(2), 551-615.

Baldwin, K., Karlan, D., Udry, C., and Appiah, E. (2016): “Does community-based development empower citizens?
Evidence from a randomized evaluation in Ghana,” Working paper.

Banerjee, A. V., Banerji, R., Duflo, E., Glennerster, R., and Khemani, S. (2010): “Pitfalls of participatory programs:
Evidence from a randomized evaluation in education in India,” American Economic Journal: Economic Policy,
2(1), 1-30.

Banerjee, A. V., Cole, S., Duflo, E., and Linden, L. (2007): “Remedying education: Evidence from two randomized
experiments in India,” The Quarterly Journal of Economics, 122(3), 1235-1264.

Banerjee, A., Duflo, E., Glennerster, R., and Kinnan, C. (2015): “The Miracle of Microfinance? Evidence from a
Randomized Evaluation,” American Economic Journal: Applied Economics, 7(1), 22-53.
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Evidence from a Randomized Evaluation in India,” American Economic Journal: Applied Economics, 9(4), 303-37.
Beaman, L., Karlan, D., Thuysbaert, B., and Udry, C. (2013): “Profitability of fertilizer: Experimental evidence from
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Behaghel, L. and De Chaisemartin, C. (2017): “Ready for boarding? The effects of a boarding school for
disadvantaged students,” American Economic Journal: Applied Economics, 9(1), 140-164.

Benhassine, N., Devoto, F,, Duflo, E., Dupas, P, and Pouliquen, V. (2015): “Turning a Shove into a Nudge? A
“Labeled Cash Transfer” for Education,” American Economic Journal: Economic Policy, 7(3), 86-125.

Blattman, C., Fiala, N., and Martinez, S. (2014): “Generating skilled self-employment in developing countries:
Experimental evidence from Uganda,” The Quarterly Journal of Economics, 129(2), 697-752.

Blattman, C. and Annan, J. (2016): “Can employment reduce lawlessness and rebellion? A field experiment with
high-risk men in a fragile state,” American Political Science Review, 110(1), 1-17.
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Bloom, N., Liang, J., Roberts, J., and Ying, Z. J. (2015): “Does working from home work? Evidence from a Chinese
experiment,” The Quarterly Journal of Economics, 130(1), 165-218.

Braconnier, C. (2017): “Voter registration costs and disenfranchisement: Experimental evidence from France,”
American Political Science Review, 111(3), 584—-604.

Bruhn, M., Karlan, D., and Schoar, A. (2018): “The impact of consulting services on small and medium enterprises:
Evidence from a randomized trial in Mexico,” Journal of Political Economy, 126(2), 635-687.

Bryan, G., Chowdhury, S., and Mobarak, A. M. (2014): “Underinvestment in a profitable technology: The case of
seasonal migration in Bangladesh,” Econometrica, 82(5), 1671-1748.

Bryan, G., Choi, J. J., and Karlan, D. (2021): “Randomizing Religion: The Impact of Protestant Evangelism on
Economic Outcomes,” The Quarterly Journal of Economics, 136(1), 293-380.

Chong, A., De La O, A. L., Karlan, D., and Wantchekon, L. (2015): “Does corruption information inspire the fight
or quash the hope? A field experiment in Mexico on voter turnout, choice, and party identification,” The Journal
of Politics, 77(1), 55-71.

Chong, A., Karlan, D., Shapiro, J., and Zinman, J. (2015): “(Ineffective) messages to encourage recycling: evidence
from a randomized evaluation in Peru,” The World Bank Economic Review, 29(1), 180-206.

Crépon, B., Devoto, F,, Duflo, E., and Parienté, W. (2015): “Estimating the impact of microcredit on those who take
it up: Evidence from a randomized experiment in Morocco,” American Economic Journal: Applied Economics,
7(1), 123-150.

Devoto, F,, Duflo, E., Dupas, P., Parienté, W., and Pons, V. (2012): “Happiness on tap: Piped water adoption in
urban Morocco,” American Economic Journal: Economic Policy, 4(4), 68-99.

Drexler, A., Fischer, G., and Schoar, A. (2014): “Keeping It Simple: Financial Literacy and Rules of Thumb,”
American Economic Journal: Applied Economics, 6(2), 1-31.

Duflo, E., Dupas, P.,, and Kremer, M. (2015): “Education, HIV, and early fertility: Experimental evidence from
Kenya,” American Economic Review, 105(9), 2757-97.

Dupeas, P. and Robinson, J. (2013): “Savings constraints and microenterprise development: Evidence from a field
experiment in Kenya,” American Economic Journal: Applied Economics, 5(1), 163-92.

Dupas, P. and Robinson, J. (2013): “Why don’t the poor save more? Evidence from health savings experiments,”
American Economic Review, 103(4), 1138-71.

Dupas, P. (2011): “Do teenagers respond to HIV risk information? Evidence from a field experiment in Kenya,”
American Economic Journal: Applied Economics, 3(1), 1-34.

Dupas, P, Hoffmann, V., Kremer, M., and Zwane, A. P. (2016): “Targeting health subsidies through a nonprice
mechanism: A randomized controlled trial in Kenya,” Science, 353(6302), 889-895.

Dupeas, P, Karlan, D., Robinson, J., and Ubfal, D. (2018): “Banking the unbanked? Evidence from three countries,”
American Economic Journal: Applied Economics, 10(2), 257-97.

Dupas, P, Huillery, E., and Seban, J. (2018): “Risk information, risk salience, and adolescent sexual behavior:
Experimental evidence from Cameroon,” Journal of Economic Behavior & Organization, 145, 151-175.

Fink, G. (2017): “Home-and community-based growth monitoring to reduce early life growth faltering: an
open-label, cluster-randomized controlled trial,” The American Journal of Clinical Nutrition, 106(4), 1070-1077.
Finkelstein, A., Taubman, S., Wright, B., Bernstein, M., Gruber, J., Newhouse, J. P, Allen, H., Baicker, K., and
Oregon Health Study Group (2012): “The Oregon health insurance experiment: evidence from the first year,” The
Quarterly Journal of Economics, 127(3), 1057-1106.

15



Giné, X., Karlan, D., and Zinman, J. (2010): “Put your money where your butt is: a commitment contract for
smoking cessation,” American Economic Journal: Applied Economics, 2(4), 213-235.

Guiteras, R., Levinsohn, J., and Mobarak, A. M. (2015): “Encouraging sanitation investment in the developing
world: A cluster-randomized trial,” Science, 348(6237), 903-906.

Hanna, R., Duflo, E., and Greenstone, M. (2016): “Up in smoke: the influence of household behavior on the
long-run impact of improved cooking stoves,” American Economic Journal: Economic Policy, 8(1), 80-114.
Hicken, A., Leider, S., Ravanilla, N., and Yang, D. (2018): “Temptation in vote-selling: Evidence from a field
experiment in the Philippines,” Journal of Development Economics, 131, 1-14.

Karlan, D., Savonitto, B., Thuysbaert, B., and Udry, C. (2017): “Impact of savings groups on the lives of the poor,”
Proceedings of the National Academy of Sciences, 114(12), 3079-3084.

Karlan, D., Osman, A., and Zinman, J. (2016): “Follow the money not the cash: Comparing methods for identifying
consumption and investment responses to a liquidity shock,” Journal of Development Economics, 121, 11-23.
Karlan, D., Mullainathan, S., and Roth, B. N. (2019): “Debt traps? Market vendors and moneylender debt in India
and the Philippines,” American Economic Review: Insights, 1(1), 27—42.

Karlan, D. and Zinman, J. (2011): “Microcredit in Theory and Practice: Using Randomized Credit Scoring for
Impact Evaluation,” Science, 332(6035), 1278-1284.

Khan, A. Q., Khwaja, A. I, and Olken, B. A. (2016): “Tax farming redux: Experimental evidence on performance
pay for tax collectors,” The Quarterly Journal of Economics, 131(1), 219-271.

Mohammed, S., Glennerster, R., and Khan, A. J. (2016): “Impact of a daily SMS medication reminder system on
tuberculosis treatment outcomes: a randomized controlled trial,” PloS One, 11(11), e0162944.

Oreopoulos, P, Angrist, J., and Williams, T. (2014): “When Opportunity Knocks, Who Answers? New Evidence on
College Achievement Awards,” Journal of Human Resources, 49(3), 572-610.

Pons, V. and Liegey, G. (2019): “Increasing the electoral participation of immigrants: Experimental evidence from
France,” The Economic Journal, 129(617), 481-508.

Pons, V. (2018): “Will a Five-Minute Discussion Change Your Mind? A Countrywide Experiment on Voter Choice
in France,” American Economic Review, 108(6), 1322-1363.

Romero, M., Sandefur, J., and Sandholtz, W. A. (2017): “Can Outsourcing Improve Liberia’s Schools? Preliminary
Results from Year One of a Three-Year Randomized Evaluation of Partnership Schools for Liberia,” Center for
Global Development Working Paper.

16



D Additional Figures and Tables

30000
§ 10000
o
S
» 3000
Q
2 Method
o
8 1000
V] — difference in differences
c
8 300 - - double debiased machine learning
213_ - =+ propensity score matching
© 100 . . -
Q - regression discontinuity
‘S 1
; 1
3 30 |

1

g :
Z 10 ]

2000 2005 2010 2015 2020
Year

Figure D.1: Number of papers on Google Scholar mentioning various methods

B
Africa
R
Asia
source Labor Markets - source
North America . Excluded . Excluded
_ Included Gender - Included
Environment .
South America
. Agriculture -
Firms -
Europe
| Crime I
0% 10% 20% 30%  40% 0% 10% 20%
Proportion Proportion
(a) Continent (b) Sector

Figure D.2: Characteristics of excluded and included papers

17



Table D.1: Summary statistics by study

Study # Specifications Average # covariates Average # observations Average take-up (R = 1)

1 5 34 1311 0.24

2 32 49 1935 0.88

3 18 18 965 0.28

4 62 61 1139 0.46

5 27 175 1775 0.67

6 11 15 244 0.43

7 12 37 247 0.74

8 5 9 2054 091

9 6 30 7405 0.47
10 5 210 875 0.42
11 72 22 14954 0.18
12 21 39 6585 0.99
13 34 115 4927 0.17
14 10 3 1070 0.73
15 2 112 652 0.31
16 101 125 1921 0.56
17 55 658 1024 0.74
18 53 16 717 0.12
19 376 1613 644 0.94
20 25 413 5879 0.63
21 170 1467 826 0.83
22 15 927 11524 0.44
23 60 392 333 0.53
24 10 23 343 0.85
25 8 72 511 0.53
26 6 23 1661 0.66
27 91 49 1585 0.87
28 36 8 2381 0.87
29 3 16 2039 0.90
30 58 541 471 0.87
31 20 16 249 0.68
32 18 12 2590 0.65
33 8 116 14393 0.08
34 33 885 597 0.76
35 38 6 4486 0.24
36 107 87 2528 0.96
37 42 650 2151 0.82
38 47 26 3720 091
39 24 114 4982 0.73
40 75 39 5149 0.83
41 12 7 11982 0.37
42 137 2 903 0.55
43 70 16 5877 0.46
44 8 14 13905 0.08
45 13 64 679 0.95
46 6 105 19598 091
47 96 13 1183 0.58
48 50 29 3987 0.90
49 19 1 3224 0.93
50 168 45 326 0.80
51 105 117 21585 0.35
52 36 63 540 0.49
53 19 124 683 0.52

Mean 48 185 3836 0.62

Notes: Column 2 represents the number of different outcome-treatment-take-up combinations for each study. Column 3 provides the average number of
covariates available to the DDML and PDSL estimator. The number of covariates can differ e.g. due to different units of analysis. Column 4 represents the

average number of observations used in the estimation of the experimental estimator. Column 5 displays the average take-up in the treatment group.



Table D.2: Meta-analysis on specifications where lagged outcomes are available

Table D.3: Meta-analysis on individual outcomes under alternative within-study correlation

TE WW  DDML
Panel C: Individual primary outcomes
Mean (f1) 0.222 -0.115  -0.109
SE (0) (0.048) (0.046) (0.040)
Total standard deviation (T) 0.240 0.215
Effective SE 0244  0.219
Num. obs. 204 204 204
Panel D: Individual outcomes
Mean (1) 0.094 -0.038  -0.047
SE (6,) (0.040) (0.035) (0.029)
Total standard deviation () 0.257 0.217
Effective SE 0.259 0.219
Num. obs. 726 726 726

Notes: We re-estimate the meta-analysis restricting attention to specifications
in which the a pre-treatment measure of the outcome variable available. Since
aggregated outcomes are based on several outcomes that each may or may not
have an individual lagged outcome, we estimate these specifications only for
individual outcomes.

assumptions
TE Within-study corr. p = 0.5  Within-study corr. p = 0.7

WW PDSL. DDML WW PDSL DDML
Panel C: Individual primary outcomes
Mean (j1) 0.157 -0.050 -0.057 -0.050 -0.053 -0.060 -0.056
SE (0,,) (0.031) (0.037) (0.031) (0.030) (0.037) (0.032) (0.030)
Total standard deviation (7) 0.278 0.224 0.221 0.283 0.241 0.234
Effective SE 0.280 0.226 0.223 0.286 0.243 0.236
Num. obs. 540 540 534 540 540 534 540
Panel D: Individual outcomes
Mean (1) 0.078 -0.010 -0.031 -0.027 -0.011  -0.035 -0.030
SE (0;,) (0.017) (0.022) (0.024) (0.017) (0.024) (0.025) (0.017)
Total standard deviation (7) 0.248  0.308 0.201 0270  0.345 0.227
Effective SE 0.249 0.309 0.202 0.271 0.345 0.228
Num. obs. 2540 2540 2368 2540 2540 2368 2540

Notes: Our primary estimates assume a within-study correlation of 0.6 when there are multiple bias estimates per study. To assess
robustness, this table reports the meta-analysis for individual outcomes assuming within-study correlations of 0.5 and 0.7.
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E Robustness

E.1 Standard Error Robustness

As explained in Appendix B.2, and focusing on a single outcome per study, our main analysis com-
putes the sampling variance (or within-study variance) of each individual bias estimate assuming
that 5(735 and 5]3\55 are independent, i.e., it does not take into account the covariance between
our experimental and observational estimator. We use as our estimand of the sampling variance of
observational bias 03 ; = ‘%Bs,s + 0fxp,, instead of U%/S,tme = U(ZDBS,S + (T%XP,S - ZCOU(E/}EDS,@S).
It is likely that EXP; and 61%5 are positively correlated since the treated units are the same in both
analyses. As a consequence, our approach assigns, for each specification fed into the meta-analysis,
an upper bound on the true variance of observational bias as 03 ; = 05 ; ;0 + 2@0(?}@,5}&).

This section explores robustness of our main result to relaxing the independence assumption,
both theoretically, and using the bootstrap.

E.1.1 Bootstrap

Bootstrapping our estimates is computationally costly because it involves repeatedly re-running
the machine-learning observational estimators. Table E.1 does this just for the “aggregate primary”
outcomes which reduces the number of specifications we must re-estimate. We find very similar
albeit slightly smaller estimates to our primary analysis, with a mean bias of —0.008 and an
effective SE of 0.206. Thus, our overall conclusions do not appear to be materially affected by the

independence assumption.

E.1.2 Theoretical analysis

We estimate 12 using the restricted maximum likelihood estimator. To give intuition to how
sensitive this estimator might be to our assumption that the experimental and observational

estimates are independent as explained in Appendix E.1, consider the closely-related Hedges’

Estimator, which has a simpler formula (see Chabé-Ferret (2023) for details):>

1S5 =0 = 1&o
fzzafot—azwhereaﬁ,t:EZ(BS—B)%B:EZB,#:

[

> 2
Z AB,s'

s=1 s=1 s=1

n|

34The actual estimator we are using is
2
S 1 B )2 _ 52
- T N e T
TREML = 2 + yS5 L
ZS 1 s5=1 [7[2? +12
s=1 \ 67 +12 g

The solution is recursive estimation until convergence. This also involves re-estimating 1.
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Table E.1: Bias estimates using bootstrap standard errors

TE WW  DDML
Panel A: Aggregated primary outcomes (bootstrap)
Mean (1) 0.145 -0.026  -0.008
SE (0,) (0.040) (0.044) (0.038)
Standard deviation () 0.254 0.203
Effective SE 0.258  0.206
Num. obs. 51 51 51
Panel B: Aggregated primary outcomes
Mean (1) 0.173 -0.030  -0.025
SE (0) (0.041) (0.044) (0.038)
Standard deviation () 0.251 0.204
Effective SE 0.255  0.207
Num. obs. 51 51 51

Notes: Column 1 presents the results of the meta-analysis on experimen-
tal treatment effects, column 2 is the bias of the simple with-without
estimator (selection bias), and column 3 is the bias of the DDML esti-
mator. All results are based on the aggregated primary outcomes using

bootstrap standard errors. Effective SE = (, /ﬁ]% + f2>. We provide re-

sults based on bootstrap standard errors solely for our main specification,
the aggregated primary outcomes, due to computational constraints.

We have:
=3 Z strue + 25 Y Cov(EXP;, OBS;) = 02, + 2Cov
s=1 s=1
t? = 62, — 02, — 2Cov = 12, — 2Cov.

Therefore, assuming 5(735 and 61%5 are independent will tend to lead us to underestimate the
effective SE if they are in reality positively correlated (Cov > 0).

Thus this back-of-the-envelope calculation is consistent with the claim that our main results
do not materially overestimate the effective standard error. If anything, we are probably slightly

underestimating the actual size of the effective standard error.
E.2 Prompts used for LLM bias prediction

We used four prompt variants in the API calls:

e WW, With paper == 0

¢ WW, With paper ==

¢ DDML, With paper == 0
¢ DDML, With paper ==
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All four share the following common template. WW is the base prompt. DDML-only additions

are shown in red.

You are an expert in social science, particularly economics. You are familiar with
the research literature (both published and unpublished work) on program evaluation
in high-and low-income countries. You also have deep expertise about human nature and

human behavior informed by your research expertise.

Based on your knowledge of human behavior and the social science literature, please
consider the following task. I will start by providing some background information and

context before describing the task itself.

I am first going to describe a social program and an eligible population to whom
that program was made available. Program Description: {ProgramDescription} Eligible

Population: {EligiblePopulation}

Context

® "Program description" is a text description of a social program made available to a
set of potential beneficiaries.

e "Eligible Population" is a text description of the population that is eligible to
receive the program.

® However, not everyone in the eligible population chose to take up the program. We
will call those who did take up the program "takers" and those who did not take up
the program "non-takers".

® Multiple welfare-relevant outcomes are tracked; each is coded so that "more" means
higher welfare.

® All comparisons below refer to the welfare level a person would reach if the program
had never existed (the counterfactual world).

® e have access to a rich set of observable characteristics about the eligible
population that we can condition on when performing our analysis. Imagine that we
have the typical observable characteristics that are collected in a household survey
such as the Demographic and Health Surveys (DHS) or the Current Population Survey
(CPS). The precise observable characteristics will be those that are particularly
useful or relevant given the program and eligible population.

® When conditioning on observable characteristics, we use a state-of-the-art method:
double machine learning (DML). This approach flexibly selects and adjusts for
observables while mitigating regularization bias and overfitting through cross-fitting

and orthogonalization.
Definitions

® Positive selection -- *after conditioning on observable characteristics*, takers
would still have **higher counterfactual welfare** than non-takers.
® Negative selection -- *after conditioning on observable characteristics* takers

would instead have **lower counterfactual welfarex* than non-takers.

(These labels describe welfare comparisons only; they do not refer to participation

probabilities.)

Illustrative examples (for guidance only)

® "Unemployment insurance offered to the general population" -- we might expect people

who are more likely to lose their jobs to enroll, so likely **negative** selection.
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® "Free prenatal vitamins for pregnant women" -- we might expect more health-conscious

mothers to enroll, so likely **positive** selection.

Task
Classify the direction of selection for the program above.

Response format -- exactly two lines

1. ‘label: positive® or ‘label: negative®
2. ‘rationale: <one concise sentence explaining the key mechanism underlying the
label>¢

For the two variants with paper context (With paper == 1), the following block was appended
at the end of the base prompt (identical for WW and DDML):

To assist you in your judgment, here is the full text of the research paper that
originally studied the program of interest. This paper provides additional background

on the context, program, eligible population, and the data available.

Important Guidance:

® The answer to your task is likely not directly stated in the research paper. While
the authors may discuss selection patterns, often they do not.

® The research paper describes a randomized experiment that evaluated the program of
interest.

® Your task is to use your expertise to predict likely selection patterns if beneficiaries
were free to choose whether or not to take up the program.

® Use the research paper to inform your contextual understanding, but do not simply
extract or summarize information from it. Focus on making an informed prediction

based on your knowledge, using the paper only as supporting context.

Now, here is the text of the research paper: {Text here}

E.3 Threats to Exchangeability

Our approach relies heavily on the assumption of exchangeability which requires that any
observational study of interest is drawn from the same population as the set of studies we use
for estimation. In this section, we discuss the several ways that this assumption might fail (site

selection bias and publication bias) and how they might impact our estimates.

E.3.1 Site selection bias

One way exchangeability might fail is if the set of programs for which an experiment has been
run differs substantially from the set of programs for which an experiment has not been run.
One mechanism that can give rise to such a difference is site selection bias: researchers and
their operational partners might be more likely to implement an experimental evaluation in
locations where they expect a project to perform especially well, be it because the characteristics
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of the agents served by the program are especially favorable to its effectiveness, or because the
caseworkers in charge of implementing the program are especially knowledgeable and efficient.

To be slightly more formal, let us define a variable Ms which takes value 1 when study s
is conducted using an RCT and 0 when it is conducted with an observational method. Other
possible margins of selection would be whether to run a program or not, whether to conduct an
evaluation or not and whether to conduct an ICRCT or not. The first ones are not relevant to our
application since we consider the population of studies for which an observational evaluation
exists. The last margin of selection does not affect the main thread in the argument.

Let us focus on recovering y, the mean selection bias. We can only observe either an experi-
mental estimate or an observational estimate for each study, the only feasible comparison that

might give us u is the difference between observational and experimental estimates. We have:

E[OBS;|M; = 0] — E[EXP,|M, = 1] = E[OBS, — TOT|M, = 0]
Ho
+ E[TOT,|M; = 0] — E[TOT|M; = 1]

site selection bias

where i is our parameter of interest: average selection bias among programs that have been
evaluated with an observational method. Extracting o from the observed data requires an
instrument that moves Mj, enabling identification of site selection bias. This is the approach
followed by Gechter (2022).

In contrast, our approach leverages variations within ICRCTs with M, = 1 to identify selection

bias directly:

[E[OBS; — EXPs|M; = 1] = E[OBS, — TOT,|M;, = 1].

H1

Our approach is therefore not directly affected by site selection bias. We face a different problem
though: whether selection bias varies with M;. Exchangeability imposes that y; = pp. One
way that this assumption might fail is if the process of selection into the program responds to
either M; or to the expected program impacts which drives M;. Programs that are evaluated
with an RCT might yield caseworkers to select individuals based on their expected response to
treatment, in order to prove effectiveness. If individuals with lower outcomes in the absence of
the treatment respond more to the treatment, we expect y; to be negative. Programs that are
evaluated with observational methods might yield caseworkers to cream-skim, yielding a positive
Ho. As a consequence, we expect the bias to our estimate of g to be negative. This is compatible
with the small and statistically insignificant negative estimates that we find.

One way to test whether p; = pp would be to use an instrument Z; for M; and to compare
E[OBS; — EXPs|Ms = 1,Z; = z] at different values of z. At higher values of z (for which
Pr(M; = 1|Zs = z) is high), experimental evaluations should contain locations where programs
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have lower effects, while at lower values of z (for which Pr(M; = 1|Z; = z) is low), only the best
programs are experimentally evaluated, yielding a larger treatment effect. If our estimates of
selection bias do not vary with z, exchangeability would be supported. If it were the case that our
estimates of selection bias vary with z, we could estimate a selection model to be able to infer the
distribution of selection bias when Mg = 0.3

E.3.2 Publication bias

Another way exchangeability might fail is because of publication bias. There is publication bias
when the probability of publication of the result of an ICRCT is higher when its result is above the
threshold of statistical significance. For simplicity, we are going to assume that publication bias is
such that we only observe experimental results that are statistically significant and positive. We
denote P; = 1 when the experimental estimate for program s has been published and 0 otherwise.
Without loss of generality, we also assume that sampling noise around our experimental estimate,
oFXP ig distributed normally with mean zero and variance U'%XP,S. We make the same assumptions
for the observational estimator, replacing the EXP index by the OBS index. Finally, we assume
that the correlation between the estimates due to sampling noise is p.
With this simple model, we have that P; = 1 [%JF:S‘M) > 1.96], and therefore:
E[EXP;|OBSs, EXP,, P, = 1] = E[EXP; + vEXP|EXP,, EXDPs > 1.960%xp ]

1'960-EXP,S —EXP;
OEXP,s

1-® (1.9605XP,S—EXPS> ’

= EXPS + UEXP,s

UEXP,s

with ¢ and P respectively the density and cumulative distribution function of the standard normal.

We also have:

[E[OBS,|OBSs, EXPs, P = 1] = E[OBS, + vO85|EXP,, EXP, > 1.960%xps]
1.96(TEXP,5—EXPS
¢ OEXP,s )

_® (1.9605Xp,57EXP5> /
UEXP,s

= OBSS + POOBS,s 1

As a consequence:

1.960Exp,s —EXP;s )

. ) p (1o
E[OBSs — EXPs|OBSs, EXP;, Ps = 1] = Bs + (p0oBs,s — 0ExP;s) 1@ (1.965');:1» —EXP\’
- (B )

which implies that, as long as cppss ~ 0rxps, publication bias tends to bias our estimates of

selection bias downwards, since the experimental estimate of the treatment effect is more inflated

350ne candidate instrument Z; is the one used by Gechter (2022): the date at which an IPA or JPAL office has been
introduced in a country. We leave the implementation of this estimation for further research.
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by publication bias than the observational one. Note that this is also compatible with the slightly
negative average selection bias that we estimate.>

36We could systematically correct for publication bias by estimating the joint distribution of experimental and
observational estimates taking into account differential probabilities of publication based on the experimental estimate,
extending Andrews and Kasy (2019). Note that we could simultaneously account for selection into the experimental
evaluation as suggested by Gechter (2022). We leave the estimation of this full selection model for future work.
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