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We propose a technique for assessing robustness to demand effects

of findings from experiments and surveys. The core idea is that

by deliberately inducing demand in a structured way we can bound

its influence. We present a model in which participants respond to

their beliefs about the researcher’s objectives. Bounds are obtained

by manipulating those beliefs with “demand treatments.” We apply

the method to eleven classic tasks, and estimate bounds averaging

0.13 standard deviations, suggesting that typical demand effects

are probably modest. We also show how to compute demand-robust

treatment effects and how to structurally estimate the model.
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A basic concern in experimental work with human participants is that, knowing

that they are being experimented on, the participants may change their behavior.

Specifically, participants may try to infer the experimenter’s objective from their

treatment, and then act accordingly (Orne, 1962; Rosenthal, 1966; Zizzo, 2010).
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For instance, participants who believe the researcher wants to show that peo-

ple free-ride in public good games might play more selfishly than they otherwise

would. Thus, instead of measuring the participant’s “natural” choice, the data

are biased by an unobservable experimenter demand effect. Demand effects pose

a threat to external validity, because participants would make different choices if

the experimenter were absent. They can affect estimates of average behavior and

treatment effects, and have been raised as a concern in the context of lab experi-

ments (List et al., 2004; List, 2006; Levitt and List, 2007), field experiments (All-

cott and Taubinsky, 2015; Dupas and Miguel, 2017; Al-Ubaydli et al., 2017), and

survey responses (Clark and Schober, 1992; Bertrand and Mullainathan, 2001).1

The core idea of our paper is that one can construct plausible bounds on

demand-free behavior and treatment effects by deliberately inducing experimenter

demand and measuring its influence. For example, in a dictator game, we explic-

itly tell some participants that we expect they will give more than they normally

would, while others are told we expect they will give less. Under the assumption

that any underlying demand effect is less extreme than our manipulations (in

a sense that we will formalize), choices under these instructions give upper and

lower bounds on demand-free behavior, and by combining bounds from different

experimental treatments we can estimate bounds on treatment effects.

We begin with a simple Bayesian model of decision-making that motivates our

approach. In our model, an experiment defines a mapping from actions to util-

ity. The experimenter is only interested in measuring the “natural” action (or

changes in that action) that maximizes the participant’s utility as derived from

the experimental payoffs. However, the participant is also motivated to take ac-

tions that conform to the experimenter’s research objectives. He infers those

objectives from the design features, and distorts his action, biasing the results.

Our demand treatments manipulate those beliefs to identify an interval contain-

ing the natural action. We remain agnostic about why the participant wishes to

please the experimenter; motives could include altruism, a desire to conform, a

1Zizzo (2010) discusses how demand effects can arise from different sources, such as perceived social
pressure from the experimenter, or inferences about appropriate behavior. In psychology, experimenter
demand effects are considered a specific case of “demand characteristics” (Orne, 1962), which also include
the simple effect of being observed (“Hawthorne” effects), or the effect of features of the environment on
task construal. Researchers might also worry about “social desirability bias” (respondents taking actions
they perceive to be moral or desirable, which may or may not relate to the researcher’s objectives), or
responses motivated by respondents’ own preferences over the findings (e.g. respondents might misreport
income in a survey to increase their eligibility for a program). In this paper we focus on inferences about
the experimenter’s objective, but the framework can easily be adapted to fit other inferences.
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misguided attempt to contribute to science, or an expectation of reciprocity from

the experimenter.

We provide an extensive set of applications of the method. We conduct seven

online experiments with approximately 19,000 participants in total, in which we

construct bounds on demand-free behavior for 11 canonical tasks.2 We employ

two different types of demand treatments. “Weak” demand treatments signal

an experimental hypothesis to our respondents: we tell them “We expect that

participants who are shown these instructions will [work, invest, ...] more/less

than they normally would.” We believe that these treatments are likely to be

more informative than implicit signals about demand in typical studies, so in our

view these bounds will be sufficient for most applications. Our “strong” demand

treatments go further, telling participants “You will do us a favor if you [work,

invest, ...] more/less than you normally would.”3 These give rise to much more

conservative bounds, which may be useful for applications where concerns about

demand are paramount. They also play an important role in our more structural

applications, described below, and their strength makes them suited for studying

demand effects in their own right.

We establish several novel facts about demand effects. Our first finding is that

responses to the weak treatments are modest, averaging around 0.13 standard de-

viations, varying from close to zero for unincentivized real effort to 0.29 standard

deviations for trust game second movers. In most tasks, our estimates are not

significantly different from zero. Overall, we interpret these results as suggesting

that demand effects in typical experiments are likely to be small. Responses to

our strong demand treatments are much larger, with bounds averaging 0.6 stan-

dard deviations and ranging from 0.23 to 1.06 standard deviations. While these

bounds are likely more conservative than required in most applications, they il-

lustrate that participants can respond substantially to strong signals about the

researcher’s objective, thus researchers are right to pay close attention to potential

demand effects in their studies.

2Specifically, we study simple time, risk and ambiguity preference elicitation tasks, a real effort task
with and without performance incentives, a lying game, dictator game, ultimatum game (first and second
mover), and trust game (first and second mover).

3We based this phrasing on Binmore, Shaked and Sutton’s (1985) experiment on the ultimatum
game, in which the instructions included the line “You will be doing us a favour if you simply set out
to maximize your winnings.” These instructions were subsequently criticized precisely because they
potentially induce experimenter demand (see e.g. Zizzo, 2010). In recent work, Ellingsen, Östling and
Wengström (2018) use similar language, deliberately using demand to try to shut down social preference
motivations in games with communication.
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The heterogeneity across tasks in responsiveness to our treatments reveals dif-

fering levels of uncertainty about the importance of experimenter demand in

different tasks. For example, there is more uncertainty (i.e., wider bounds) about

demand effects for trust game second movers than in the effort task. We provide

an additional assumption, “monotone sensitivity,” under which this heterogeneity

can be interpreted as revealing variation in the magnitude of demand effects in

different tasks, i.e. that demand effects are larger for trust game second movers.

Next, we apply the method to bounding treatment effect estimates, deriving

bounds on the real effort response to performance pay. The bounds we obtain

using our weak demand treatments are quite tight, corresponding to around 11

percent of the estimated treatment effect (or 0.07 standard deviations). The

strong demand treatments generate wider bounds, but even these more conser-

vative bounds exclude zero, supporting the qualitative finding that incentives

increase effort. We apply standard methods to construct “demand-robust” confi-

dence intervals on the bounds and on the underlying actions or treatment effects

contained by those bounds. These intervals combine the standard parameter un-

certainty due to sampling error with the additional uncertainty due to potential

demand effects.

Third, we turn to point estimation of treatment effects. We ask whether apply-

ing same-signed demand treatments to both the control and treatment group (for

example, demanding high effort from both groups) can reduce or eliminate bias

due to experimenter demand. Intuitively, the goal is to “control for” demand by

harmonizing beliefs across treatments. We show that this approach is valid under

additional assumptions, and apply it to the effort experiment, obtaining a set of

alternative estimates, all lying within 10 percent of the conventional treatment

effect estimate.

Fourth, following the basic approach of DellaVigna and Pope (2018), we illus-

trate how sufficiently informative demand treatments can be used in conjunction

with a structural model to obtain unconfounded estimates of structural param-

eters of interest and measure participants’ value of conforming to the experi-

menter’s wishes. We estimate that the value of pleasing the experimenter in our

effort task is equivalent to increasing the monetary incentives by 20 percent.

Fifth, we explore some of the properties of demand effects. Our approach re-

lies on a Monotonicity assumption, essentially assuming that participants want to

comply with rather than defy the researchers’s wishes. We find strong support for

4



this assumption in average behavior, and at the individual level, using a within-

participants design. We show using simple belief data that participants’ beliefs

about the experimental objective respond as expected to our demand treatment.

We also compare our bounds to estimates of the effect of double anonymity in

dictator games, one manipulation that has been interpreted as reducing demand.

Finally, we examine four moderators of sensitivity to experimenter demand: in-

centivized versus hypothetical choice; gender; attention; and participant pool.

Finally, we provide an extended summary of recommendations for practitioners,

covering how to apply the methods developed and practical lessons learned from

our own applications.

We contribute to the small literature discussing experimenter demand effects

(Zizzo, 2010; Fleming and Zizzo, 2014; Shmaya and Yariv, 2016), demand charac-

teristics (Orne, 1962), and obedience to the experimenter (Milgram, 1963). We are

aware of few attempts to directly assess the empirical importance of experimenter

demand, and a key contribution of our paper is to provide a general framework

for studying demand effects and evidence from a wide range of standard tasks.

In recent work, concurrent with our own, Mummolo and Peterson (2017) conduct

two vignette studies on support for free speech and partisan news consumption,

and a hypothetical audit study concerning racial bias in hiring, using treatments

similar to our weak demand treatments.4 While they do not construct bounds,

they find modest responses to these treatments, in line with our findings.5

Relatedly, our paper contributes to the literature on social pressure (DellaVigna,

List and Malmendier, 2012; DellaVigna et al., 2017) and moral suasion (Dal Bó

and Dal Bó, 2014).

We also relate to the literature which examines the effects of anonymity on

4For example, some participants in the audit study are told “We expect that job candidates with
names indicating they are white will be more likely to receive an interview because of the historical
advantages this group has had on the job market,” while others are told “We expect that job candidates
with names indicating they are African American will be more likely to receive an interview because
corporations are increasingly looking to diversify their workforces.”

5Other related papers include Cilliers, Dube and Siddiqi (2015), who show that a white foreigner’s
presence in the lab in experiments in Sierra Leone distorted giving in dictator games; Lambdin and
Shaffer (2009), who find that participants’ ability to guess hypotheses varied (but was mostly low) across
three different experimental tasks; Bischoff and Frank (2011), in which an actor (unsuccessfully) tried to
induce demand effects by their delivery of instructions in a lab game; and Tsutsui and Zizzo (2014) who
measure individual demand sensitivity by participants’ propensity to select dominated lotteries from a
list when told “it would be nice if some of you were to choose” them. List (2007) and Bardsley (2008)
argue that behavior in the dictator game is to a large degree an artifact of the experimental situation.
Small, Loewenstein and Slovic (2007) assess the robustness of the “identifiable victim effect” to different
question framings and find that the effect disappears once the experimenter informs respondents about
the effect.
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behavior in the laboratory. Participants who believe their choices are being mon-

itored might be more likely to try to please the experimenter. Hoffman et al.

(1994) and List et al. (2004) find that varying anonymity can influence pro-social

behavior, while Barmettler, Fehr and Zehnder (2012) find little effect. Intrigu-

ingly, Loewenstein (1999) suggests that participants’ responses to the anonymity

treatments in Hoffman et al. (1994) could themselves be driven by demand. Our

findings also complement work that explores the principal-agent relationship be-

tween experimenter and participant (Chassang, Padró i Miquel and Snowberg,

2012; Shmaya and Yariv, 2016).

Finally, our paper relates to the debate on how lab behavior generalizes to the

field (Harrison and List, 2004; List, 2006; Levitt and List, 2007; Falk and Heck-

man, 2009; Camerer, 2012; Kessler and Vesterlund, 2015). There are multiple

reasons why behavior might differ between lab and field, including demand ef-

fects. Our focus is on bounding the influence of demand while holding constant

other design features. In some cases there may exist a “natural field experi-

ment” counterpart to the design of interest, in which participants are unaware

of the experiment, addressing demand alongside other external validity concerns.

However, the set of studies that can be practically conducted as natural field

experiments is limited. This literature often highlights a distinction between

qualitative (directional) and quantitative effects. Either could be threatened by

experimenter demand. Our approach can be used to put quantitative bounds

on point estimates, but also to assess whether a qualitative finding could be ex-

plained by a demand effect, for instance by asking whether the bounds exclude

zero or a sign reversal.

One indication of the level of concern about demand is the consideration given

to it in study design. The experimental toolbox contains a number of techniques

that are partly or wholly motivated by the goal of reducing the influence of exper-

imenter demand. For example, researchers often work hard to conceal potential

signals about the study objective (such as efforts to avoid making gender salient,

Bordalo et al., 2016); favor between-participant designs despite the larger samples

required (Charness, Gneezy and Kuhn, 2012);6 or conduct costly natural field ex-

6Charness, Gneezy and Kuhn (2012) write (p2), “Within designs may lead to spurious effects, through
respondents expecting to act in accord with some pattern, or attempting to provide answers to satisfy
their perceptions of the experimenter’s expectations... Demand effects are likely to be stronger in a
within design.”
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periments (Harrison and List, 2004).7 These approaches plausibly make it more

difficult for participants to infer the true experimental hypothesis – hopefully re-

ducing the correlation between inference and treatment – or reduce participants’

responsiveness to their inferences. But it is difficult to be sure that one has been

successful, or that participants are not acting out some other conjecture that could

be correlated in unpredictable ways with treatment. It is also difficult to know

what is the set of studies that remains unpublished, or not even conducted, due

to unresolved concerns about demand. Our bounding approach seeks to isolate

the hidden demand effects by amplifying them with an explicit demand effect. It

can be applied broadly without requiring major changes to experimental design,

and we believe it will prove a useful addition to the toolbox.

The paper proceeds as follows. Section I presents a simple model of experi-

menter demand. Section II describes the experiments. Section III presents bounds

on natural actions and treatment effects, demand-corrected point estimates, and

structural estimates. Section IV examines properties of demand effects and the

assumptions underlying our approach. Section V provides guidance for applying

our approach in different settings. Section VI concludes. A set of web appendices

contains theoretical details and additional results.

I. Theory

We now derive a simple model of experimenter demand and demand treatments.

We begin with the three central assumptions at the heart of our approach, and

provide a Bayesian model that generates them. Next we discuss demand treat-

ment design. We conclude with a brief discussion of heterogeneity, and defiers,

participants who do the opposite of the experimenter’s wishes. Web appendices

B.B5 and B.B6 extend the model to allow participants to infer the importance of

the experimenter’s objective, and to model demand treatments that ask partici-

pants to ignore the experimenter’s objective.

We model a decision-maker (he) who has preferences over outcomes induced

by his action a ∈ R in an experiment. a could be continuous or discrete, but

for simplicity we focus on the case of continuous actions with a natural ordering

(more/less effort, investment, giving).

7Other design features include abstract framing of choices, anonymized responses, homogenized deliv-
ery of instructions and incentivized choice. Review articles by Zizzo (2010) and de Quidt, Vesterlund and
Wilson (2018) provide a discussion, de Quidt, Vesterlund and Wilson (2018) also measure their adoption
in published experimental papers.
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In the absence of demand effects, the optimal action is simply a function of

the decision-making environment. We index environments by ζ ∈ Z, where

ζ captures aspects including participant characteristics (e.g. male/female, stu-

dent/representative sample), setting (e.g. lab/field, online/in-person), experi-

mental treatments, the content and framing of information provided to partici-

pants, and so on. A key component of ζ is information the participant has about

other treatments (e.g. in a within-participant design), which might inform their

beliefs about the experimental objective.

Given ζ, we define the “natural” action a(ζ) as that which would be taken ab-

sent any confounding motive for pleasing the experimenter.8 The experimenter

(she) is interested in measuring a specific action a(ζ) (e.g., the level of giving

out of an endowment), or a treatment effect a(ζ1) − a(ζ0) (e.g., the effect of

incentives on effort provision). Unfortunately, her task is complicated by experi-

menter demand. After observing ζ, the decision-maker forms a conjecture about

the experimenter’s wishes or objectives, which may change his action. Instead of

a(ζ), he chooses action aL(ζ), where L signifies the presence of a “latent”, unob-

served experimenter demand influence. The influence could increase or decrease

a: aL(ζ) R a(ζ). We define the latent demand effect in environment ζ as the

difference aL(ζ)− a(ζ).

While nonzero latent demand automatically biases estimates of mean actions,

it does not necessarily bias estimates of treatment effects. To see this, note that

the observed treatment effect can be decomposed as follows:

aL(ζ1)− aL(ζ0) = a(ζ1)− a(ζ0)︸ ︷︷ ︸
Effect of interest

+ [aL(ζ1)− a(ζ1)]︸ ︷︷ ︸
Latent demand in ζ1

− [aL(ζ0)− a(ζ0)]︸ ︷︷ ︸
Latent demand in ζ0

(1)

The first term on the right-hand side is the treatment effect of interest. The

second and third capture the potential bias due to experimenter demand. If both

demand effects are equal they cancel and the treatment effect is identified, but

they may not cancel, either because the participant’s inference or his response to

a given inference varies with ζ. The usual logic of a randomized experiment is

to ensure that variation in treatment is orthogonal to potential confounds, but

8In some experiments, the experimenter essentially fills the role of a real-world authority figure. For
example part of the real-world response to incentives might include a response to perceived demand from
an employer. For a researcher interested in the total effect of incentives, perceived demand may actually
be part of the environment of interest, ζ, rather than a confound.
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as demand effects may be driven by the treatment itself, randomization does not

guard against bias.

EXAMPLE 1: Consider two variants on the Dictator game, in which a partici-

pant is told to choose what fraction of $10 to give to a recipient. In variant 0, he

is told that the recipient is aware that the choice is taking place, while in variant

1 they are unaware (for instance, the money will just be added to a show-up fee).

Absent any motive for pleasing the experimenter, the participant would prefer to

give $4, so the true treatment effect is a(ζ1)− a(ζ0) = $0. However, in variant 0

he infers that the experimenter wants him to be generous, so he gives $5, while in

variant 1 he infers that the experimenter wants him to be selfish, so he gives zero.

The experimenter fails to measure true preferences in either case, and identifies

a treatment effect that is in reality a demand effect.

A. Demand treatments

We now assume that the experimenter has at her disposal a particular kind

of treatment manipulation which we call a demand treatment. Negative demand

treatments deliberately signal a demand that the decision-maker decrease his

action, inducing a−(ζ), while positive demand treatments demand an increase and

induce a+(ζ). Our first substantive assumption is a basic monotonicity condition:

ASSUMPTION 1 (Monotonicity): a−(ζ) ≤ aL(ζ) ≤ a+(ζ).

Assumption 1 requires that demanding an increased action does not decrease it,

and vice versa. It has a natural connection to the monotonicity condition in the

estimation of local average treatment effects (Angrist and Imbens, 1994): the

assumption rules out “defier” behavior whereby participants do the opposite of

what is demanded.

Our main assumption amounts to assuming that the demand treatments can

bound the natural action of interest:

ASSUMPTION 2 (Bounding): a−(ζ) ≤ a(ζ) ≤ a+(ζ).

It implies bounds for natural actions (2) and treatment effects (3):

a(ζ) ∈ [a−(ζ), a+(ζ)](2)

a(ζ1)− a(ζ0) ∈ [a−(ζ1)− a+(ζ0), a+(ζ1)− a−(ζ0)](3)

9



For some purposes we may wish to be able to make comparative statements

about demand in different environments. Although the latent demand effect is

unobservable, the sensitivity of behavior to demand treatments may be informa-

tive about it. First, we define what we mean by “sensitivity.”

DEFINITION 1 (Sensitivity): Sensitivity is the difference in actions under pos-

itive and negative demand treatments: S(ζ) = a+(ζ)− a−(ζ).

REMARK 1: In addition to bounding the natural action, assumptions 1 and 2

jointly imply that sensitivity S(τ) provides an upper bound on the magnitude of

the latent demand effect: S(ζ) ≥
∣∣aL(ζ)− a(ζ)

∣∣.
This fact enables us to use sensitivity S(ζ) to make statements of comparative

ignorance, in the sense that if S(ζ1) > S(ζ0) there is more scope for large latent

demand effects under ζ1 than ζ0. But it could nevertheless be that the true latent

demand effect is larger under ζ0. Our third assumption, Monotone Sensitivity,

allows us to make concrete claims about magnitudes.

DEFINITION 2 (Comparison classes): A comparison class ZC ⊆ Z is a set of

environments such that Monotone Sensitivity holds for all z ∈ ZC .

ASSUMPTION 3 (Monotone Sensitivity): S(z) is strictly increasing in∣∣aL(z)− a(z)
∣∣ for all z ∈ ZC .

Monotone Sensitivity permits statements such as “latent demand is stronger for

participant pool A than participant pool B” or “latent demand is stronger under

incentive scheme A than incentive scheme B.” We derive some comparison classes

below using our Bayesian model.

B. Bayesian model

We now provide a simple foundation for our main assumptions, and derive con-

ditions under which they will or will not hold. The environment ζ determines the

mapping from actions a ∈ R into outcomes or distributions over outcomes. The

decision-maker’s payoff is v(a, ζ), where v captures the payoff structure (mapping

from actions to outcomes) and preferences (mapping from outcomes to utility).

We assume v is strictly concave and differentiable, so the natural action a(ζ)

solves v1(a(ζ), ζ) = 0.
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Latent demand

Demand enters preferences as follows. Upon observing ζ, the decision-maker

makes an inference about the experimenter’s objective, h ∈ {−1, 1}. If h = −1,

he believes the experimenter benefits from him taking low actions, while if h = 1

he believes she benefits from high actions. He has a preference, φ, for pleasing

the experimenter, which we allow to depend upon ζ.9 We remain agnostic about

why the participant wishes to please the experimenter; possible motives include

altruism, a motive to conform, or a belief that he will ultimately be rewarded for

doing so.

We assume utility takes the following separable form:

U(a, ζ) = v(a, ζ) + aφ(ζ)E[h|ζ].(4)

The optimal action aL(ζ) thus solves:

(5) v1(aL(ζ), ζ) + φE[h|ζ] = 0

so aL(ζ) = a(ζ)⇔ φE[h|ζ] = 0. There is therefore no demand confound if either

the decision-maker assigns equal likelihood to the preferred action being high or

low (E[h|ζ] = 0), or he does not care about the experimenter’s objectives (φ = 0)

(these would be expected in a “natural field experiment,” where the participant

is unaware of the experiment). We assume the decision-maker’s mean prior over

h is E[h] = 0, so in the absence of any new information about h he chooses

a(ζ). The relation between actions and beliefs is captured by daL(ζ)/dE[h|ζ] =

−φ/v11(a, ζ), which has the same sign as φ. Actions are monotone in beliefs.

We model learning as follows. The environment ζ includes a signal hL(ζ) ∈
{−1, 1} which the decision-maker believes is a sufficient statistic, i.e. E[h|hL(ζ), ζ] =

E[h|hL(ζ)]. He believes that with probability pL(ζ), the signal is correct (hL = h),

and with probability 1 − pL(ζ) it is pure noise (hL = ε, where ε equals −1 or 1

with equal probability). We impose that pL(ζ) ∈ [0, 1). It is straightforward to

9We have in mind that φ might depend on the identity of the experimenter (e.g. a firm versus
a researcher) or decision-maker (e.g. women might have different attitudes than men). φ might also
vary with other features such as the salience of the benefit to the experimenter, or how important the
participant believes his actions are for achieving the experimenter’s objectives.
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see that:

E[h|hL(ζ)] = hL(ζ)pL(ζ)(6)

The decision-maker’s belief depends on ζ in two ways. First, via the sign of hL(ζ),

i.e. whether he believes that the experimenter wants a high or low action, which

determines the direction of the latent demand effect. Second, via pL(ζ), i.e. the

perceived informativeness of the signal, which affects the magnitude of the latent

demand effect.

Demand treatments

We assume that the experimenter can choose a “demand treatment” signal

hT ∈ {−1, 1, ∅}. hT = ∅ corresponds to the usual case in which no demand treat-

ment is used, while hT = 1 and hT = −1 correspond to positive and negative

demand treatments. These signals provide information about h so as to direct

the decision-maker’s beliefs. We assume that if hT = ∅ the decision-maker does

not update his belief about h (for example because their prior is that demand

treatments are never used). This assumption is reasonable as (at present) demand

treatments are rarely used in experiments. We maintain throughout that ζ (and

hence v(a, ζ), hL(ζ), pL(ζ), and φ(ζ)) does not depend on the demand treat-

ment, i.e. receiving a demand treatment does not change the decision-maker’s

interpretation of the maintained experimental environment or their motive for

pleasing the experimenter. Instead the demand treatment is interpreted purely

as informative about the direction of the experimenter’s objective.10

The decision-maker believes that hT is informative about h: with probability

pT , hT equals h, and with probability 1 − pT it equals η, which takes values -1

and 1 with equal probability. η and ε are believed to be independent (we revisit

this assumption in web Appendix B.B6). The Bayesian posterior is:

E[h|hT , hL(ζ)] =
hL(ζ)pL(ζ) + hT pT

1 + hL(ζ)pL(ζ)hT pT
(7)

10Formally, we assume that ζ(hT ) = ζ, ∀ζ. This assumption will be stronger for some demand treat-
ments and environments than others, and is an important consideration in the selection of appropriate
demand treatments. If it does not hold then Bounding might fail because the demand treatments alter
the natural action itself: a(ζ(∅)) /∈ [a(ζ(−1)), a(ζ(1))]. In web Appendix B.B5 we extend the model to
allow φ to depend on hT and show that the Bounding condition remains unchanged.
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Thus, if hL(ζ) = hT , the demand treatment reinforces the participant’s belief,

while if the signals have opposite signs they offset one another.

Assumptions

We now use the model to provide foundations for our main assumptions de-

scribed in Section I.A. Derivations can be found in web Appendix B.

First, Assumption 1 (Monotonicity) states that a positive demand treatment

increases the action (relative to no demand treatment) and the negative demand

treatment decreases it. It is straightforward to see that except for the trivial case

pT = 0, these conditions are satisfied if and only if φ ≥ 0, i.e. a weak preference

for pleasing the experimenter.

PROPOSITION 1: Monotonicity holds for all pT if and only if φ ≥ 0.

Second, Assumption 2 (Bounding) states that the demand treatments provide

bounds on the true action. In the Bayesian model, given φ ≥ 0 (Monotonicity),

the action is larger or smaller than a(ζ) when φE[h|hT , hL] ≥ 0 or φE[h|hT , hL] ≤
0 respectively. Intuitively, whatever the latent demand effect, the demand treat-

ment that opposes it must be informative enough to reverse the sign of beliefs. It

is clear from inspection of (7) that this simply requires the demand treatments

to be “more informative” than latent demand, pT ≥ pL(ζ).

PROPOSITION 2: Given φ ≥ 0, Bounding holds if and only if pT ≥ pL(ζ).

Finally, Assumption 3 (Monotone Sensitivity) states that within a comparison

class ZC of environments, differences in sensitivity are informative about dif-

ferences in underlying latent demand. Latent demand and sensitivity can vary

for multiple reasons, so there is no simple condition that guarantees when this

assumption will and will not hold. In web Appendix B.B3 we work out some

important cases. First, we show that Monotone Sensitivity holds when variation

in demand effects is driven by differences in the strength of preference for pleasing

the experimenter, φ. Second, we analyze Monotone Sensitivity when variation in

demand effects is driven by differences in the payoff function, v, deriving spe-

cific conditions when v is additively or multiplicatively separable and providing

examples such as variation in incentives. Third, we show that Monotone Sensi-

tivity holds in a model of inattention to experimenter demand. Finally, we show

that Monotone Sensitivity does not hold in general when environments differ in
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the beliefs they induce (E[h|hL(ζ)]). We use these findings when interpreting

heterogeneous responses to demand treatments in section IV.D.

C. “Weak” and “strong” demand treatments

There are many different ways to signal a desire for high or low actions. How

should the experimenter choose? The model gives us a way to answer this ques-

tion. The width of the bounds [a−(ζ), a+(ζ)] is increasing in pT . Therefore the

tightest bounds, subject to satisfying Bounding (pT ≥ pL(ζ)), are obtained when

pT = pL(ζ). In other words, we want the “least informative” demand treatment

possible, subject to being “informative enough” for Bounding.11 We want to

choose demand treatments that are likely to be “stronger” or more informative

than any latent demand in the study of interest, while avoiding excessively strong

signals that lead to uninformative bounds.

In our empirical applications we employ two types of demand treatments, de-

scribed in more detail below. Our “weak” manipulations explicitly signal what

we expect participants to do; we believe these are already more informative than

likely latent demand in typical experiments. Our “strong” manipulations go fur-

ther, telling participants which action will “do us a favor.” These lead to more

conservative bounds, and may be useful for applications where researchers are es-

pecially concerned about demand effects. They also play a role in more structural

applications, described in Sections III.D and III.E.

D. Heterogeneity and Defiers

The approach naturally extends to the case where participants are heteroge-

neous and the experimenter is interested in average behavior or average treatment

effects. If Monotonicity and Bounding hold for all agents individually, then they

also hold for average actions, so we can simply reinterpret a, aL, a+ and a− as

representing average behaviors and our approach remains valid.

An important dimension of heterogeneity is in φ, the preference for pleasing the

experimenter. Monotonicity requires a weak positive preference, φ ≥ 0. “Defiers”

with φ < 0 prefer to go against the experimenter’s wishes. Bounding fails for these

11This gives a novel reason why deception in experiments can be problematic. If the demand treat-
ment is regarded as uninformative because participants are used to second-guessing what experimenters
are really after, then the bounding exercise is invalidated. We thank an anonymous referee for this
observation.
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individuals, because a− > a+. We show in web Appendix B.B4 that the method

is able to tolerate some defier behavior, but too much will lead to failures of

Bounding. We give an example where Bounding is satisfied provided the average

participant is a complier. In general, for defier behavior to be “small enough” the

joint distribution of preferences and beliefs must be such that that the response

by the compliers outweighs that of the defiers.

II. Sample and experimental design

We conducted seven experiments in total to demonstrate our approach and to

provide estimates of demand sensitivity on a wide range of standard experimental

tasks (to save space, we provide citations for the tasks in web Appendix E). Our

respondents complete one of eleven tasks: a dictator game; a risky investment

game, without or with ambiguity; a convex time budget task; a trust game (first

or second mover); an ultimatum game (first or second mover); a lying game;

and a real effort task with or without performance pay. We conduct all of our

experiments online, primarily because the large number of treatments would be

infeasible to implement in the laboratory. We designed the experiments to maxi-

mize comparability. For all experiments except the effort task, the action spaces

are similar (they can be expressed as real numbers from 0 to 1); we pay the same

show-up fee; recruit from the same participant pools; use the same mode of col-

lection (online); the same response mode (sliders); and keep stakes as similar as

possible.12

We employ two phrasings for our demand treatments. Our “weak” treatments

explicitly tell participants that we expect high or low actions. For example, in the

investment game, participants were told at the end of their instructions that “We

expect that participants who are shown these instructions will invest more/less

in the project than they normally would.”13 The strong treatments go further,

telling participants that they will “do us a favor” by taking a higher or lower

action. For example, in the dictator game, participants in the positive demand

12For the effort task, we replicated the design employed in DellaVigna and Pope (2017) and DellaVigna
and Pope (2018). The primary differences with our other tasks are a higher show-up fee and a different
response mode (effort).

13It is not completely straightforward to design demand treatments that report the experimental
hypothesis, because if the experimenter truly hypothesizes that the action will be high in one treatment,
telling participants she expects it to be low could be considered deceptive. By referring to “participants
who are shown these instructions” (which include the demand treatment) we avoid this issue, because
it is indeed true that we expect high actions from participants in the positive demand treatment group
and low actions in the negative demand treatment group.
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condition were told “You will do us a favor if you give more/less to the other

participant than you normally would.” We keep the phrasing of the demand

treatments as homogeneous as possible across tasks. In the two-player games we

do not provide information about demand treatments shown to the other player,

but our approach could be extended to create common knowledge about demand.

Table 6 summarizes the design features of each experiment, and Table 7 provides

design details, parameters, and the exact wording of the demand treatments for

each task. Figure A1 gives an example from the experimental interface. Full

experimental instructions can be found on the journal webpage.

A. Participant populations

We conducted six experiments with approximately 16,000 participants (or “work-

ers”) on Amazon Mechanical Turk (MTurk) (Experiments 1–3 and 5–7), and one

experiment with around 3,000 participants using an online panel sample rep-

resentative of the US population in terms of region, age, income, and gender

(Experiment 4). MTurk is an online labor marketplace that is frequently used by

researchers for surveys and experiments. It is attractive because it offers a large

and diverse pool of workers. There is some evidence that MTurk workers are

more attentive to instructions than college students (Hauser and Schwarz, 2016).

To participate in our MTurk experiments, workers had to live in the U.S, have an

overall approval rating of more than 95 percent, and have completed more than

500 tasks on MTurk, fairly standard parameters in research on MTurk.14

Most workers on MTurk are experienced in taking surveys, which might affect

the external validity of our results. We used the representative sample, whose

participants are less experienced with social science experiments, to replicate a

subset of our findings. The sample is maintained by a market research company,

Research Now.

14We excluded prior participants when recruiting for experiments 2 and 3. Technically this is achieved
by applying a “qualification” flag to the MTurk accounts of prior participants, which can then be used to
prevent them seeing or accepting new MTurk tasks posted by us. At the time of running experiments 5
and 6, we had essentially exhausted the active participant pool, and to avoid undue delays in recruitment
we therefore allowed prior participants to take part. Around 36 percent of the respondents in these
experiments had not participated before. In experiment 7, which was conducted some time later, we did
exclude prior participants, but a server communication error meant that not all accounts received the
qualification flag and as a result some prior participants did take part. 70 percent of the respondents
in this experiment had not participated before. Our results are virtually unchanged by the dropping of
participants who completed more than one of our experiments; results are available upon request.
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B. Pre-analysis plans

Our experiments were conducted in a sequence, between May 2016 and May

2017. Each is described in a pre-analysis plan (PAP) posted online prior to

launch.15 The sequence is laid out in Table 6. For each experiment, the PAP

details the data to be collected, treatment variables, experimental instructions,

and how we planned to analyze that experiment’s data.

However, presenting the data experiment-by-experiment is repetitious. There-

fore, for brevity and clarity of exposition, in the paper we pool the data and

analyze all tasks side-by-side for our weak and strong demand treatments sepa-

rately (this structure was described in pre-analysis plan 5). Our main analysis

uses data from MTurk respondents with real stakes, which we have for all eleven

tasks studied. In the analysis of heterogeneity we introduce hypothetical choice

data from MTurk and the representative panel, which were collected for a subset

of tasks. When averaging across tasks we weight observations to give equal weight

to each task.

Other than this pooling across experiments, our analysis closely follows what

was pre-specified.16 For completeness, web Appendix C presents all pre-specified

analyses, experiment-by-experiment. We refer to findings in the text if relevant.

C. Summary statistics

Tables D1 to D7 in the web Appendix present the pre-specified balance tables

for all of the experiments. Tables D8 to D15 provide summary statistics on our

respondents. Table D12 highlights that respondents from the online panel are

representative of the US population by gender, income, age, and region, and

other observables. Attrition was low, below 2 percent on average, and did not

differ across demand treatment arms (Tables D16 and D17).

15The pre-analysis plans were posted on the Social Science Registry and can be found here:
https://www.socialscienceregistry.org/trials/1248.

16In some experiments we proposed to standardize responses based on average choices in the no-
demand condition. Because we did not collect no-demand data for all tasks, for consistency we always
standardize based on the negative demand treatment group (a simple and inconsequential linear trans-
formation). For our real-effort tasks, which were based on DellaVigna and Pope (2018), we pre-specified
that we would apply their exclusion criteria to the analysis dataset (excluding participants that take
more than 30 minutes, take the task more than once, score zero or more than 4,000 points, or have
invalid MTurk IDs). In our other experiments we did not pre-specify exclusions, but for consistency we
also drop participants who submitted multiple responses (less than 0.5 percent). This is inconsequential
for the results.
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III. Applying the method

A. Bounding natural actions

In this section we provide bounds on natural actions estimated using our weak

and strong demand treatments. For a subset of tasks we also measured behavior

with no demand treatment, and describe these results in Section IV.A where

we discuss Monotonicity. Our objects of interest here are mean behavior in the

positive (a+(ζ)) and negative (a−(ζ)) demand conditions.

Panel A of Table 1 and Figure 2 show mean actions by task and demand

treatment for incentivized MTurk respondents with weak treatments. Panel B of

Table 1 and Figure 1 display sensitivities (a+(ζ)−a−(ζ)), in both raw and z-scored

units. Sensitivity is modest, averaging around 0.13 standard deviations, and

frequently not significantly different from zero. The strongest responses (between

0.2–0.3 standard deviations) were observed for the dictator game, the ultimatum

game second mover, and the trust game second mover. As we have argued, the

weak manipulations seem likely to satisfy bounding for typical applications, so

these results give cause for optimism.

Panel A of Table 2 and Figure 2 show mean actions in the different demand

treatment arms employing strong treatments. Panel B of Table 2 and Figure 1

display sensitivities. Behavior is responsive to our strong demand treatments,

and sensitivity is significantly different from zero in all tasks, averaging around

0.6 standard deviations. Sensitivity is particularly high in the dictator game, for

second movers in the trust and ultimatum games, and for unincentivized effort.

These manipulations are significantly stronger than likely implicit signals in most

experiments or surveys, so providing quite conservative upper bounds on typical

demand biases. However, they do demonstrate that participants are motivated

to respond to signals about the researcher’s goals, and that responses can be

significant when those signals are strong. Thus the attention researchers pay to

potential demand effects at the study design stage is well justified.

[Insert Table 1, Table 2, and Figures 1 and 2]

B. Bounding treatment effects

Our real effort experiments replicate treatments from DellaVigna and Pope

(2018). Participants alternately pressed the “a” and “b” keyboard buttons for
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10 minutes, earning one point per pair. One group were told that their score

“will not affect [their] payment,” while a second group received one cent per 100

points. By combining the bounds estimated for each incentive treatment we can

construct bounds on the treatment effect of performance pay on effort provision.17

Table 3 displays the conventional treatment effect (aL(1)−aL(0), where “1” and

“0” correspond to the reward per 100 points), the upper bound of the treatment

effect (a+(1)− a−(0)), and the lower bound (a−(1)− a+(0)). In words, the lower

bound on the treatment effect is given by comparing participants who received

performance pay, coupled with a negative demand treatment, to participants

who received no performance pay, coupled with a positive demand treatment.

We first show the bounds generated using our weak treatments, which are quite

tight, ranging from 0.67 to 0.75 standardized units.18 The width of these bounds

corresponds to only 11 percent of the estimated treatment effect (or 0.07 standard

deviations), suggesting a limited role for experimenter demand in explaining the

effort response to incentives. Naturally, the bounds created using the more con-

servative strong treatments are much wider, ranging from 0.23 to 1.21 standard

deviations. Even these conservative bounds support the qualitative finding that

effort responds to incentives.

[Insert Table 3]

C. Confidence intervals

It is possible to compute confidence intervals for (a) the bounds themselves,

and (b) the parameters contained by those bounds (a natural action or treatment

effect), following Imbens and Manski (2004) (see Appendix B.B7 for details).

The latter can be thought of as “demand-robust” confidence intervals, combin-

ing conventional parameter uncertainty due to sampling error with the additional

17Our pre-analysis plans did not explicitly describe the bounding of treatment effects, but it is an
immediate extension of the approach to bounding actions.

18In constructing the bounds using our weak treatments we note that the average effort in the no-
incentive condition was actually slightly higher for those receiving negative demand than those receiv-
ing positive demand, i.e. we observe a small monotonicity failure (a+(0) < a−(0)). When sensitiv-
ity is low, such outcomes can easily arise due to sampling variation; both values here are statisti-
cally indistinguishable. In such cases, the procedure we propose in this section could lead to bounds
on the treatment effect with negative width. A conservative approach, which we follow, is to first
“iron” the bounds on the no-incentive condition, by averaging them. Formally, one can compute
a+iron(ζ) = max{a+(ζ), 0.5[a+(ζ) + a−(ζ)]} and a−iron(ζ) = min{a−(ζ), 0.5[a+(ζ) + a−(ζ)]}, and then

use these values when computing the bounds on the treatment effect, which become a+(1) − a−iron(0),

and a−(1) − a+iron(0). Because in this case a+iron(0) = a−iron(0) , the width of the weak bounds on the

treatment effect is simply equal to a+(1)− a−(0).
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uncertainty about possible demand effects. Uncertainty due to sampling error

can be reduced in the usual way by increasing sample size (specifically, in the

demand treatment arms), while uncertainty due to demand is reduced by select-

ing minimally informative demand treatments, subject to Bounding (see section

I.C). Table A3 presents confidence intervals computed from individual tasks us-

ing both the weak and strong demand treatments. Table A4 presents confidence

intervals on the bounds and treatment effect of the effect of incentive pay in the ef-

fort experiment. Zero lies outside these confidence intervals, providing statistical

support for the finding that incentives increased effort.

D. Controlling for Demand

The nonparametric bounding approach described above yields bounds on treat-

ment effects, but researchers may be interested in point estimates that “control

for” demand effects. Intuitively, one might apply same-signed demand treatments

(positive-positive or negative-negative) to the treatment group and the control

group, with the goal of harmonizing demand between treatments. In this section

we describe how using this approach can eliminate bias if demand treatments are

assumed to be fully informative (pT = 1), and can reduce bias in other cases.

Derivations are given in web Appendix B.B8.19

We will assume throughout that Monotonicity holds strictly, i.e. φ > 0 (φ =

0 would imply no demand bias). The participant’s usual first-order condition,

with demand treatment hT and optimal action a∗(ζ, hT ), is v1(a∗(ζ, hT ), ζ) +

φ(ζ)E[h|hT , hL(ζ)] = 0. A first-order Taylor approximation around the natural

action a(ζ) yields:

a∗(ζ, hT ) ≈ a(ζ) + Φ(ζ)E[h|hT , hL(ζ)](8)

where Φ(ζ) ≡ −φ(ζ)/v11(a(ζ), ζ) is a slope term capturing the effect of beliefs on

actions, which we term “responsiveness.” Φ is positive as v11 < 0.

Assume two treatment groups, ζ ∈ {0, 1}, with identical demand treatments

hT ∈ {−1, 1, ∅}, from which we estimate a treatment effect a∗(1, hT )− a∗(0, hT ).

19We thank the editor, Stefano DellaVigna, as well as an anonymous referee for suggesting this line of
inquiry.
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Its bias relative to the true effect can be decomposed as follows:

Bias = [a∗(1, hT )− a∗(0, hT )]− [a(1)− a(0)]

≈ Φ(1)
(
E[h|hT , hL(1)]− E[h|hT , hL(0)]

)︸ ︷︷ ︸
Bias due to beliefs

+ (Φ(1)− Φ(0))E[h|hT , hL(0)]︸ ︷︷ ︸
Bias due to “responsiveness”

The first term captures differences in beliefs between the treatment and control

environments, for example because they induce differences in latent demand. The

second captures differences in behavioral responsiveness, given beliefs, for example

because the treatment and control groups are at different locations on the cost of

effort function.20

Fully informative demand treatments

Importantly, in the special case where researchers are willing to assume that

demand treatments are fully informative (pT = 1), we can eliminate the bias due

to beliefs: if hT is fully informative, E[h|hT , hL(1)] = E[h|hT , hL(0)] = 1 or −1.

We are left with the bias due to differences in responsiveness. We can then ask

whether this bias is important, by testing for differences in sensitivity between

treatment and control (an interaction effect):21

[a∗(1, 1)− a∗(1,−1)]︸ ︷︷ ︸
Sensitivity (ζ = 1)

− [a∗(0, 1)− a∗(0,−1)]︸ ︷︷ ︸
Sensitivity (ζ = 0)

≈ 2 (Φ(1)− Φ(0)) .

If this term is small, we can obtain a point estimate of the demand-free treatment

effect by comparing behavior on two same-signed demand treatment, essentially

we are “controlling for” the influence of demand.

If sensitivity differs significantly between treatment and control, we can still

approximate the treatment effect by averaging the estimates obtained with two

20In some settings it may be possible to sign the bias due to responsiveness. If demand treatments are
applied, and bounding holds, the sign of E[h|hT , hL(0)] is known and equal to the sign of hT . Knowledge
of the shape of v can then help us to sign Φ(1) − Φ(0). For example in the real effort case, we expect
responsiveness to decrease as effort increases, due to the curvature of the cost of effort function. That
implies Φ(1)−Φ(0) < 0, in which case the bias due to responsiveness is negative when positive demand
treatments are used.

21Or, equivalently, testing whether the treatment effect estimate differs when two positive versus two
negative demand treatments are used.
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positive and two negative demand treatments:

0.5 ([a∗(1, 1)− a∗(0, 1)] + [a∗(1,−1)− a∗(0,−1)]) ≈ a(1)− a(0).

This approach is equivalent to estimating the treatment effect from the midpoints

of the bounds for the treatment and control groups. It relies on the symmetry of

the first-order Taylor approximation.

Less informative treatments

Alternatively, researchers might wish to use same-signed weaker demand treat-

ments to align beliefs among participants, without requiring pT = 1. In general

this will not eliminate bias entirely, but we can derive conditions under which

the bias will be reduced. Since differences in responsiveness will no longer be

testable we focus on the prospect of reducing the bias due to beliefs, which will

be sufficient if variation in responsiveness between treatments is small.22 We find

that when the latent demand biases have opposite signs (hL(1) = −hL(0), which

is the typical scenario that concerns researchers) our Bounding assumption is suf-

ficient for two same-signed demand treatments to reduce the bias due to beliefs.

When the latent demand biases have the same sign (hL(1) = hL(0)), same-signed

demand treatments that reinforce latent demand (i.e. hT = hL(1)) always reduce

bias. Sufficiently strong opposite-signed treatments reduce bias, but Bounding is

not enough to guarantee this.

In summary, the Bounding assumption covers all cases except where the demand

effects in treatment and control agree with one another and disagree with the

demand treatments used. To apply this approach, therefore, researchers may

need to use judgment about the likely sign of demand effects in their experiment,

or report a range of estimates.

Applications

We apply the above-developed approaches to our effort experiment in web Ap-

pendix Table A1. For the strong demand treatments, where we have argued

pT = 1 is not an unreasonable assumption, we see large and statistically signif-

icant differences in sensitivity between the 0¢ and 1¢ treatment groups, so we

22In other words we ask when
∣∣E[h|hT , hL(1)]− E[h|hT , hL(0)]

∣∣ < ∣∣E[h|hL(1)]− E[h|hL(0)]
∣∣, for

hT ∈ {−1, 1}.
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instead apply the “midpoint” technique. For the weak demand treatments we

report treatment effect estimates for both positive-positive and negative-negative

demand treatment applications. Encouragingly, the estimates are all quite sim-

ilar to one another, lying within 10 percent of the conventional treatment effect

estimate.

E. Structural estimates

Under further assumptions, strong demand treatments permit structural esti-

mation of demand-free model parameters (v), as well as φ and E[h|hL]. Knowing

v allows the researcher to make predictions about behavior absent experimenter

demand. Knowing φ allows them to quantify the importance of experimenter de-

mand. Measuring beliefs can enable them to diagnose and eliminate the sources of

latent demand effects. We illustrate how structural estimation can be performed

using the real effort experiment. Because our model simply nests that of DellaV-

igna and Pope (2018) (DP), we follow their approach to structural estimation.23

DP estimate the following utility function (expressed in our notation):

(9) v(a) = (s+ ζ)a− c(a)

The action a is effort, measured in points on the task, s is an intrinsic motivation

parameter (workers may exert effort because they enjoy the task), and c(a) is a

cost of effort function. We assume the environment enters v only via the piece

rate, so let ζ ∈ {0, 1, 4} be a real number. DP solve the first order condition and

estimate the model parameters using nonlinear least squares (NLLS).24

Adding demand to this utility function gives:

(10) U(a, ζ) = (s+ ζ + φ(ζ)E[h|hT , hL(ζ)])a− c(a)

with corresponding first-order condition

(11) s+ ζ + φ(ζ)E[h|hT , hL(ζ)]− c′(a∗(ζ)) = 0

DP consider two alternative forms for c: First, a power function c(a) = ka1+γ/(1+

γ), yielding optimal effort equal to:

23We note that the structural analysis was not included in our pre-analysis plan.
24They also employ a minimum distance procedure. We stick to NLLS for brevity.
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(12) a∗(ζ) =

(
s+ ζ + φ(ζ)E[h|hT , hL(ζ)]

k

) 1
γ

Second, an exponential form c(a) = k exp(γa)/γ, with effort level:

(13) a∗(ζ) =
1

γ
log

(
s+ ζ + φ(ζ)E[h|hT , hL(ζ)]

k

)
We have seven treatment groups in total: neutral treatments with piece rates

equal to 0 cents, 1 cent, and 4 cents per 100 points on the task; and positive and

negative strong demand treatments in the 0 and 1 cent groups.25 Noting that

E[h|hL(ζ)] = pL(ζ)hL(ζ) ∈ (−1, 1), we can treat it as a single parameter whose

sign identifies hL and whose magnitude identifies pL(ζ). This leaves us with 10

parameters: s, k, γ, φ(0), φ(1), φ(4), pL(0)hL(0), pL(1)hL(1), pL(4)hL(4), and

pT , so we need to impose some further restrictions.

First we assume that φ is fixed: φ(0) = φ(1) = φ(4) = φ, eliminating two

parameters. In other words, varying incentives do not change the participants’

desire to please the experimenter. Second, as in the previous section, we assume

pT = 1, which implies that E[h|hT , hL] = hT . By assumption this is not justified

for our weak demand treatments, so we focus on the strong treatments. We are

left with seven parameters, s, k, γ, φ, pL(0)hL(0), pL(1)hL(1), and pL(4)hL(4),

and are therefore exactly identified. We additionally estimate a specification in

which we restrict latent demand to depend only on whether monetary incentives

are present, i.e. pL(1)hL(1) = pL(4)hL(4).

While we use the same model as DP, identification comes from a different

source. Under the assumption of no latent demand (as in DP), s, γ, and k

are identified from the three neutral treatment groups. When latent demand

is present, the model parameters (s, γ, k, φ) are identified from the demand treat-

ment groups; with these in hand the neutral treatments allow us to back out the

beliefs pL(ζ)hL(ζ).

Full details of the estimation procedure, which follows DP, are provided in web

Appendix B.B9. We estimate equation (12) in logs and equation (13) in levels. Es-

25We also collected data using weak demand treatments, but we do not use it in this analysis a)
because it was collected in a separate experiment and b) because for estimation we need to impose the
parameter restriction pT = 1, which we do not believe is satisfied in the weak treatments.

24



timation results are presented in Table 4. Columns 1–3 correspond to the power

cost function and columns 4–6 to the exponential cost function. In each case

we first mirror DP by estimating s, γ, and k using only the neutral treatments,

assuming that there is no latent demand.26 Second, we include all treatment

groups and impose that latent demand depends only on whether monetary incen-

tives are present (pL(1)hL(1) = pL(4)hL(4)). Third, we allow latent demand to

differ across all three incentive levels. Coefficients s and φ are measured in cents

per 100 points. Therefore, s = 1 is interpreted as intrinsic motivation playing an

equivalent role to an incentive of 1 cent per 100 points.

Our main finding is a nontrivial preference for pleasing the experimenter. Our

estimates of φ take values in the range 0.2–0.3 and are similar across specifications.

A value of 0.2 implies that moving from complete uncertainty (E[h|hL] = 0) to

complete certainty that high effort is desired (E[h|hL] = 1) increases effort as

much as increasing the incentive by 0.2 cents per 100 points.

Our estimates of E[h|hL] are mostly negative, consistent with latent demand

decreasing effort. However, the estimates are noisy and typically not significantly

different from zero. We estimate that in the 4 cent treatment, E[h|hL(4)] ≈ −6.5,

while the theory requires E[h|hL(4)] ∈ (−1, 1) (we note that the estimate is noisy

and −1 lies well within the 95 percent confidence interval). This most likely

reflects the fact that our demand treatments were only applied to the 0 and 1

cent treatment groups, so the effort cost function must be extrapolated far out of

sample to estimate beliefs for the 4 cent group. We provide further discussion on

this point, and an illustrative figure, in web Appendix B.B9.

[Insert Table 4]

IV. Properties of demand effects

In this section we examine some of the properties of demand effects and the

assumptions underlying our approach. We begin with a discussion of Monotonic-

ity, examining whether it holds first on average and then at the individual level.

Second we turn to the central mechanism that drives behavior in the model:

changes in beliefs due signals about demand. Third, we consider the Bounding

assumption. Although we cannot test it directly (since natural actions are not

26There are some differences between our parameter estimates and DP’s earlier work, which may
reflect changes in the participant pool over time.
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observed), we show that our bounds seem reasonable given existing evidence on

responsiveness to a particular design feature – anonymity in the dictator game –

that has been argued to potentially induce variation in demand. Fourth, we study

heterogeneity in sensitivity to our demand treatments, focusing on four dimen-

sions: incentives, gender, attention, and participant pool. These are cases where

we might expect our Monotone Sensitivity assumption to hold, such that vari-

ation in sensitivity is informative about underlying variation in latent demand.

Fifth, we examine the effect of our demand treatments on the variance and full

distribution of actions.

A. Monotonicity

Monotonicity on average

Our first theoretical assumption is Monotonicity: a+(ζ) ≥ aL(ζ) ≥ a−(ζ).

Panel C of Table 1 and Panel C of Table 2 examine this assumption for the

subset of tasks in which we collected data without applying demand treatments.27

We estimate the following equation using the incentivized MTurk respondents, in

which POSi andNEGi are dummy variables for the positive and negative demand

treatments, and the no-demand condition is the reference group:

ZYi = π0 + π1POSi + π2NEGi + εi(14)

We find strong support for Monotonicity in average actions. The strong de-

mand treatments always moved average actions in the intended direction, and in

most cases the differences are statistically significant. We find a significant nega-

tive response to negative weak demand in the investment game and a significant

positive response to weak positive demand in the dictator game. Responses to the

the positive demand treatment in the investment game and the negative demand

treatment in the dictator game have the wrong signs but are close to zero and

not statistically significant. Finally, our data from the representative sample is

fully consistent with Monotonicity for both the weak and strong treatments (see

Table C18).

27We have data for the dictator and investment games with weak and strong treatments, plus convex
time budgets and real effort with only the strong treatments. Because the weak and strong treatments
were applied in separate experiments, we analyze the data separately.
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Testing monotonicity within-person

Our seventh experiment uses a within-participant design, collecting data on

behavior first without, and then with a demand treatment. This allows us to

examine Monotonicity directly at the individual level, and identify defiers, who

try to do the opposite of the experimenters wishes. Intuitively, by observing

who increases and who decreases their action in response to a positive demand

treatment, we can identify who is a complier and who is a defier. As discussed in

section I.D “too much” defiance can invalidate our bounds.

The design is as follows. MTurk participants were told that they would com-

plete two tasks, and be paid according one of them, selected by chance. Half

played the dictator game twice, and half the investment game twice. They first

completed the task without any demand treatment, then again with the addition

of a strong positive or negative demand treatment. We thus have four groups,

split by dictator/investment game and positive/negative demand.

The model implies a simple interpretation of the data. Participants observe

the first task, form a belief about h, and make a choice. They then observe the

second task with the demand treatment, update their belief, and make a new

choice. Strict compliers, with φ > 0, will increase their action relative to task 1,

strict defiers with φ < 0 will decrease it, and those with φ = 0 should take the

same action in both tasks.28

Our main findings are captured by Figure 3, which plots actions from tasks 1

and 2. In the positive demand treatments, strict compliers lie above the 45 degree

line, strict defiers lie below and those who did not change their action lie on the

line. Only about 5 percent of our respondents are strict defiers. About 30 percent

do not change their behavior in response to our demand treatments, while the

remaining 65 percent strictly comply with our demand treatments (proportions

are similar across tasks). Thus we find very little evidence of defiance.

Table A2 presents mean actions and sensitivities estimated from the within

design and the equivalent objects from the earlier between-participants experi-

28The within design might fail to perfectly classify respondents, for two reasons. First, the theory
assumes that ζ, and therefore the natural action, a(ζ), is independent of the demand treatment, hT .
This is a strong assumption in our within design, because it is clear that the response to hT is part of
the analysis, which could change participants’ interpretation of ζ. However, if participants infer that our
interest is in showing people respond to our demand treatments, compliers would increase and defiers to
decrease their actions, in which case we would still arrive at the correct classification. Second, it might
matter that participants have made a prior choice, either out of a concern for consistency (reducing
responsiveness to our demand treatments) or a motive to conceal their defier/complier identity.
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ments. For the within experiment, “no demand” cells are computed from task

1, while demand treatment cells and sensitivities from task 2. The sensitivities

are quantitatively very similar in the between and within designs. This is en-

couraging, as it suggests researchers can simply and cheaply obtain bounds using

within-participant demand treatments, avoiding the need to recruit additional

participants to apply our method.

Within-participant data can be used to construct “defier-corrected” bounds.29

These, with confidence intervals, are displayed in Table A6. They are almost

identical to the conventional bounds, reflecting the low rate of defiance and giving

further comfort that defiance is quantitatively unimportant. Table A5 reports raw

actions separately for compliers and defiers.

B. Beliefs

The core mechanism in our model is that participants form beliefs about the

experimenter’s objective in response to implicit or explicit signals. We examine

this assumption with simple, unincentivized belief data collected after partici-

pants had completed their experimental task. The purpose of the measures was a

manipulation check, to ascertain that participants’ beliefs responded as expected

to the demand treatments. We asked two questions: “What do you think is the

result that the researchers of this study want to find?,” and “What do you think

was the hypothesis of this research study?” Responses were binary: participants

could respond that they thought the objective/hypothesis was either a high or

low action.30 We assume that participants report a high belief if their posterior

(E[h|hL] or E[h|hT , hL]) is positive, and a low belief if negative, so the average

response tells us the fraction of participants with high beliefs.

Results for incentivized MTurk respondents are presented in Tables A8–A9 in

the web Appendix. They confirm that our treatments moved average responses

in the anticipated direction. Overall, the levels of beliefs and magnitudes of shifts

in beliefs are similar for the strong and weak treatments, i.e. both were equally

successful in fixing the sign of beliefs. In the theory, strong and weak treatments

29For defiers, a(ζ) ∈ [a+(ζ), a−(ζ)] so, if the proportion of compliers is c the natural action lies in the
interval [cE[a−(ζ)|φ ≥ 0] + (1− c)E[a+(ζ)|φ < 0], cE[a+(ζ)|φ ≥ 0] + (1− c)E[a−(ζ)|φ < 0]]. In practice
one simply inverts the demand treatment variable for participants identified as defiers and computes
bounds as before. The construction of defier-corrected bounds was not included in our pre-analysis plan.

30One could collect richer belief measures and incentivize responses, but asking for fine-grained beliefs
about our own motivations seemed quite unnatural, particularly as there was no objective truth against
which to score. Our measures may of course be subject to their own demand bias.
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are equally effective at fixing the sign of beliefs if pT ≥ pL, but stronger treatments

lead to more extreme posteriors.31

C. Comparison of effect sizes

Is the bounding assumption reasonable? Although it is not directly testable,

we compare our bounds to previous manipulations that have been hypothesized

to induce demand effects. Our examples all come from the dictator game and

include four studies that varied participants’ degree of anonymity, and a study

in Sierra Leone that varied the presence of a white foreigner.32 We present effect

sizes from these experiments and our own in Table A11.

Sensitivity to our weak treatments (a 17 percent reduction in giving under neg-

ative versus positive demand) is very close to the average effect size across these

5 studies (around 21 percent reduction in giving in response to treatment), and

our strong treatments comfortably bound this average (a 42 percent reduction).

Considering individual studies, our weak bounds are close in magnitude to those

from Bolton, Katok and Zwick (1998), Barmettler, Fehr and Zehnder (2012), and

Cilliers, Dube and Siddiqi (2015), but smaller than those from Hoffman et al.

(1994) and Hoffman, McCabe and Smith (1996). These two studies in partic-

ular, however, have been criticized for inducing potentially strong experimenter

demand (Loewenstein, 1999), so may represent a scenario where the more conser-

vative strong bounds are preferable. Their effect sizes are close to or a bit larger

than (and not significantly different from) our strong bounds.

The exercise is of course only suggestive, since responses in these studies include

direct effects of anonymity on behavior as well as potential experimenter demand.

Additionally, the studies we consider were conducted in the laboratory and dif-

fer in various other ways from our online setting. The results are nevertheless

encouraging, in particular that our weak bounds seem to perform quite well.

31pT ≥ pL also implies that all participants’ beliefs should have the “correct” sign following a demand
treatment. Not all of our participants reported correct beliefs following a demand treatment. This could
be due to measurement error in our belief data, or, as we discuss in Appendix B.B3, participants might
be inattentive to our demand treatments. If they are also inattentive to latent demand signals such
participants do not threaten Bounding.

32Hoffman et al. (1994), Hoffman, McCabe and Smith (1996), Bolton, Katok and Zwick (1998) and
Barmettler, Fehr and Zehnder (2012) study the effect of “double blind” versus “single blind” anonymity
in dictator games, to our knowledge this is the complete set. Cilliers, Dube and Siddiqi (2015) study the
effect of white foreigner presence.
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D. Heterogeneity

Does sensitivity to demand treatments vary by design and participant char-

acteristics? Here, we examine heterogeneous responses to our strong and weak

demand treatments on four pre-specified dimensions: by whether choices are in-

centivized or hypothetical; gender; attentiveness; and participant pool (MTurk

vs. representative online panel). Whether or not this heterogeneity can be inter-

preted as informative about differences in underlying latent demand depends upon

whether Monotone Sensitivity holds for the environments under consideration, i.e.

whether they belong to the same comparison class. We show in Appendix B.B3

that variation in incentives, attention, and the preference for pleasing the exper-

imenter, φ (which may differ by gender or participant pool), form valid bases for

comparison classes.

Incentivized vs. hypothetical choices

In MTurk experiments 1 and 2 we randomly assigned participants to make either

hypothetical or incentivized choices. In theory, we would expect higher sensitivity

in hypothetical choice, as the cost of deviating from the natural action is lower. To

test this prediction, we regress standardized actions on a dummy, POSi, taking

value one for the positive demand treatment and zero for the negative treatment;

a dummy indicating incentivized choice, Mi; and their interaction:

ZYi = β0 + β1POSi + β2Mi × POSi + β3Mi + εi(15)

Results for the weak and strong demand treatments are presented in Table 5.

Interestingly, participants making hypothetical or incentivized choices responded

very similarly to experimenter demand, in each task and on average, and if any-

thing sensitivity is slightly higher when incentivized.

Relatedly, we ask how sensitivity differs when we increase performance pay in

the effort task. Reasonable assumptions would imply sensitivity is decreasing in

performance pay (see web Appendix B.B3). Table 2 shows that sensitivity to our

strong treatments was around 3.5 times higher when effort was unincentivized, as

predicted. We do not see the same pattern under the weak treatments, though

this may simply reflect the fact that sensitivity to these treatments was low.

The mixed evidence on responsiveness to incentives is somewhat surprising.
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One possibility is that our incentivized choices still involve relatively low stakes,

and that we would see a difference at higher stakes. Additionally, the theory

allows φ to depend upon ζ and another possibility is that raising the stakes also

raises participants’ desire to please the experimenter (e.g. due to reciprocity). We

see this as an interesting avenue for future work. Our results relate to previous

work examining the effects of incentives on behavior in the lab (Camerer et al.,

1999).

Gender and attention

We measure self-reported gender in all tasks on MTurk and in the representative

panel, and attentiveness in all tasks except the effort task (since DP did not

measure this variable). We define a participant as attentive if they passed an

attention screener at the beginning of the task.33 We estimate the following

equation:

(16) ZYi = β0 + β1POSi + β2Hi + β3Hi × POSi + εi

where Hi is the dimension of heterogeneity of interest.

As can be seen in Table 5, we find that women respond more strongly to the

strong demand treatments than men, with sensitivity around 0.15 standard devi-

ations higher, but no significant difference for the weak treatments (where overall

sensitivity and thus statistical power is lower). We interpret the evidence as sug-

gestive of greater desire to please the experimenter among women, which relates

to the literature on gender differences in preferences (Croson and Gneezy, 2009).

Turning to attention, only 10 percent of MTurk respondents failed our screener,

so we have little power to detect differences in sensitivity. Table 5 shows higher

sensitivity (around 0.12 standard deviations) to our weak and strong manipula-

tions among attentive participants, but these effects are not significant.34

33We use the screener developed by Berinsky, Margolis and Sances (2014). It presents participants
with a paragraph of text that appears to direct them to select their preferred online news sources from
a list, but concealed in the text is an instruction to instead choose two specific options. The assumption
is that attentive respondents read the question and follow the concealed instruction, while inattentive
respondents do not. Passing the attention check is weakly positively correlated with previous completion
of MTurk tasks, so we also consider heterogeneity using a representative online panel whose respondents
are generally less experienced and are unlikely to have seen the screener before. Moreover, there is little
variation in sensitivity by experience, results are available on request.

34Our pre-analysis plans specified that these heterogeneity tests would be conducted at the experiment
level, rather than averaged across all tasks within demand treatments. We perform these tests in web
Appendix C. Experiment 1 (strong treatments) finds higher sensitivity for women (p=0.10) and attentive
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In the representative online panel we find significantly higher sensitivity among

women, and among attentive participants (see web Appendix C.C4). Approxi-

mately 65 percent failed the screener, increasing our power here.

[Insert Table 5]

MTurk vs. representative online panel

Some researchers are concerned that MTurk workers are experienced research

participants and may behave differently than a more representative participant

pool. In addition, MTurkers need to maintain a high work “acceptance” rating

and may therefore be especially motivated to please the researcher (Berinsky,

Huber and Lenz, 2012). To address such concerns, and to test an additional di-

mension of heterogeneity, we replicated the MTurk dictator game and investment

game experiments with respondents from a representative online panel, whose

participants are less experienced in the types of tasks we consider. We used both

weak and strong demand treatments, or no demand treatment. All choices were

incentivized at the same stakes as in the MTurk experiments.35 Table 5 tests for

differences in sensitivity between MTurk and representative survey participants,

pooling tasks and for each task separately.36

Representative panel participants responded very similarly to MTurk partici-

pants, with sensitivity on average 0.03 standard deviations higher (not significant)

under both weak and strong treatments. There are some small differences in sen-

sitivity to the strong treatments at the game level (significant at 10 percent for the

dictator game), but little evidence of systematic differences between participant

pools.

participants (p=0.10). Experiment 2 (weak treatments)finds slightly higher sensitivity for men (p=0.25)
and attentive participants (p=0.53). Experiment 3 (effort, strong treatments) finds almost identical
sensitivity for men and women (p=0.95).

35Respondents in the online panel were incentivized with $1 stakes in the panel currency, which they
can use to buy products in the survey provider’s online store. We discovered after the study that, while
some of the products in the store have a value equivalent to $1, others have lower value. This means that
the effective stake size in the representative online panel may have been lower than on MTurk. Since we
find no differences in response to demand treatments depending on whether choices are incentivized or
hypothetical on MTurk, we do not expect this to be an important concern.

36Our pre-analysis plan specified the test pooled across the strong and weak demand treatments - we
perform this test in web Appendix C.C4 and find no significant difference.
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E. Demand and the distribution of actions

We have focused on analysis of mean behavior, but other moments may respond

to our demand treatments. For example, by aligning beliefs, they might reduce

the variance of observed actions. Table A12 shows that variance is very similar

and in most cases slightly lower under the demand treatments relative to no

demand. Figures A2 and A3 plot the cumulative distribution of actions for each

task and demand treatment, showing that the demand treatments shift the full

distribution of behavior. Encouragingly these shifts seem to almost always satisfy

first-order stochastic dominance, consistent with Monotonicity.

V. Using the method in practice

We now provide some practical guidance on using the methods developed in this

paper. First, we discuss settings in which demand treatments can be employed.

Second, many of the applications in this paper have been to “levels” of behavior, so

we list a few examples of other cases where one might be specifically interested in

bounding levels. Third, we summarize the set of techniques and recommendations

we have developed. Web Appendix B.B10 uses a diagram to work through an

example of each technique.

We have two main settings in mind for applications. First, demand treatments

can be applied in experiments in the laboratory, online, or in the field. We

expect their primary use will be for the various robustness checks and estimation

procedures we have outlined, but they can also be used for studying demand

effects themselves. A natural next step in this agenda would be to compare

demand sensitivity in the lab and online, which may differ due to differences

in attentiveness or social interaction with the experimenter. Second, they can

readily be applied in surveys. Our estimates from hypothetical dictator games,

convex time budgets and investment games, which are commonly used as survey

questions, show that reasonable bounds are obtained even when choices are not

incentivized. Applications include standalone surveys (e.g. on political views,

inflation expectations, labor market outcomes) or field experiments, which often

rely on survey data. For instance, participants might be told: “The researchers

expect respondents who received the intervention (e.g. cash, bednets, education)

to report more favorable outcomes.”

While the majority of experiments are aimed at estimating treatment effects,
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researchers are often interested in mean responses in both surveys and experi-

ments, and might be concerned about robustness. We provide a few examples.

Policymakers might be intrinsically interested in levels of policy views about tax-

ation or immigration; beliefs about these objects; willingness to contribute to

public goods; inflation or growth expectations; consumption plans; or time use.

In the lab, we are often interested in the level of giving in dictator games; offers

and frequency of rejections in ultimatum games; competitiveness of specific sub-

populations (e.g. men versus women); the amount of lying in coinflip games; or

the degree of risk or ambiguity aversion (e.g. for calibrating models).

A further use of levels estimated in the lab or surveys is to predict behavior

in other contexts (e.g. using risk, time or social preference measures to predict

real-world behaviors). The extent to which these measures are predictive may be

sensitive to demand effects, which can be thought of as a form of measurement

error. Our approach can be used to shed light on how important such errors

might be. Within-subject applications even allow the researcher to measure and

control for participant-level estimates of demand sensitivity.

We make the following recommendations on how to use demand treatments.

First, in most studies we believe “weak” manipulations will give sufficiently con-

servative bounds, because explicit signals about the study hypothesis are likely to

be more informative than implicit messages from the design in most cases. If po-

tential demand confounds are a first-order concern, researchers may find stronger

language, similar to our “strong” manipulations, helpful for further robustness.

Our phrasings were chosen for broad applicability, but researchers with a specific

application in mind may prefer to design their own demand treatments to best suit

their setting.37 With bounds in hand, researchers can compute demand-robust

confidence intervals following Imbens and Manski (2004).

Second, demand treatments can be applied within-participant by adding a small

number of questions or tasks to the end of a study. These are repetitions of ques-

tions or tasks presented earlier in the study, now including a demand treatment.

Our estimates suggest that this approach yields similar bounds to a between-

participant design, but is much less demanding of sample size. It also allows

researchers to identify which participants are most sensitive to demand, and com-

37When bounding treatment effects, one could refer to the effect of interest in the demand treatment.
For example, one could tell participants “You are in the high incentive treatment and will be compared
with a group that has low incentives. We expect that incentives will increase effort.”
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pute “defier-corrected” bounds.

Third, we have shown how demand treatments can be used for point iden-

tification of treatment effects, applying same-signed demand treatments to the

treatment and control group. If demand treatments are “sufficiently informative”

this approach can eliminate biases due to differences in beliefs, and any remain-

ing bias due to differences in behavioral responsiveness can be tested for. We

have also shown how sufficiently informative demand treatments can be used for

structural identification of models, by plausibly eliminating nuisance parameters

due to unobservable beliefs.

Fourth, in a study with many treatment arms, adding all of the possible de-

mand manipulations may become impractical. In such settings, researchers could

add demand manipulations to a subset of groups, and then compare treatment

effect magnitudes to demand sensitivity measured in those groups. When an ex-

periment features many different and complicated choices, researchers may find it

worthwhile to consider what overarching beliefs could affect their estimates (for

example, participants might believe that they should misreport their valuations in

willingness-to-pay elicitation), and target those with demand treatments, rather

than manipulating individual actions.

Finally, researchers conducting similar experiments to those in this paper may

find our estimates useful for benchmarking purposes.

VI. Conclusion

We propose a technique for assessing the robustness of experimental results to

demand effects. We deliberately induce demand in a structured way to measure

its influence and to construct bounds on demand-free behavior and treatment

effects. We formalize the intuition behind the procedure with a simple model in

which participants form beliefs about the experimental objective and gain utility

from conforming to it. Bounds are obtained by intentionally manipulating those

beliefs.

Across eleven canonical experimental tasks we find modest responses to demand

manipulations that explicitly signal the researcher’s hypothesis, with bounds aver-

aging around 0.13 standard deviations in width. We argue that these treatments

reasonably bound the magnitude of demand effects in typical experiments, so our

findings give cause for optimism.

Using stronger manipulations we show how to obtain demand-robust point es-
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timates of treatment effects, and analyze demand effects structurally. In a real

effort task with incentives of 1 cent per 100 “points,” we estimate a utility of

pleasing the experimenter of around 0.2 cents per 100 points. Combining demand

treatments with structural estimation can enable identification of preference pa-

rameters free of demand confounds.

Future work might employ similar treatments to study how to mitigate demand

in experiments, for example by examining how demand sensitivity varies with

features of the environment. One avenue for further exploration is the effect of

incentives, given the central role they play in experiments.
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Ellingsen, Tore, Robert Östling, and Erik Wengström. 2018. “How Does

Communication Affect Beliefs in One-shot Games With Complete Informa-

tion?” Games and Economic Behavior, 107: 153–181.

Falk, Armin, and James J Heckman. 2009. “Lab Experiments are a Major

Source of Knowledge in the Social Sciences.” Science, 326(5952): 535–538.

38



Fleming, Piers, and Daniel John Zizzo. 2014. “A Simple Stress Test of

Experimenter Demand Effects.” Theory and Decision, 78(2): 219–231.

Harrison, Glenn W, and John A List. 2004. “Field Experiments.” Journal

of Economic Literature, 42(4): 1009–1055.

Hauser, David J, and Norbert Schwarz. 2016. “Attentive Turkers: MTurk

Participants Perform Better on Online Attention Checks Than do Subject Pool

Participants.” Behavior Research Methods, 48(1): 400–7.

Hoffman, Elizabeth, Kevin A McCabe, and Vernon L Smith. 1996. “On

Expectations and the Monetary Stakes in Ultimatum Games.” International

Journal of Game Theory, 25(3): 289–301.

Hoffman, Elizabeth, Kevin McCabe, Keith Shachat, and Vernon

Smith. 1994. “Preferences, Property Rights, and Anonymity in Bargaining

Games.” Games and Economic Behavior, 7(3): 346–380.

Imbens, Guido W, and Charles F Manski. 2004. “Confidence Intervals for

Partially Identified Parameters.” Econometrica, 72(6): 1845–1857.

Kessler, Judd, and Lise Vesterlund. 2015. “The External Validity of Lab-

oratory Experiments: The Misleading Emphasis on Quantitative Effects.” In

Handbook of Experimental Economic Methodology. , ed. Guillaume R. Fréchette
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VII. Main Figures and Tables

Figure 1. Sensitivity to demand treatments, z-scored
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Note: This figure uses data from incentivized MTurk respondents with weak and strong demand treat-
ments. It presents the z-scored sensitivity of behavior to our demand treatments, i.e. the normalized
difference in behavior between the positive and negative demand conditions. Error bars indicate 95
percent confidence intervals.

Figure 2. Bounding natural actions
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Note: This figure uses data from incentivized MTurk respondents with weak (W) and strong (S) demand
treatments. It displays mean responses by task and demand treatment. Upper (lower) points correspond
to positive (negative) demand treatments (a+ and a−), intermediate points to “no demand” treatments
(aL, not collected for all tasks). Lighter shaded sections indicate the response to positive and negative
demand treatments separately, dark shaded sections indicate sensitivity when aL was not measured.
Error bars indicate 95 percent confidence intervals.
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Figure 3. Measuring defiance through a within-participant design
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Note: This figure uses MTurk data from experiment 7 and displays the scatterplot of responses in task
1 (“no demand” condition) and task 2 (demand condition). Points above the 45-degree line indicate an
increase in the action, and points below the 45-degree line a decrease. The size of the rings is proportional
to the number of observations.
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Table 1—Response to weak demand treatments, all incentivized tasks

Time Risk Ambiguity Effort Effort Lying Dictator Ultimatum Ultimatum Trust Trust
Aversion 0 cent bonus 1 cent bonus Game Game 1 Game 2 Game 1 Game 2

Panel A: Unconditional Means

Positive demand 0.770 0.524 0.557 0.331 0.484 0.537 0.382 0.470 0.413 0.455 0.398
(0.027) (0.023) (0.024) (0.014) (0.012) (0.012) (0.014) (0.014) (0.014) (0.023) (0.017)

No demand 0.541 0.313
(0.021) (0.015)

Negative demand 0.766 0.472 0.499 0.343 0.469 0.530 0.318 0.443 0.362 0.430 0.348
(0.027) (0.021) (0.024) (0.014) (0.013) (0.011) (0.014) (0.013) (0.013) (0.025) (0.012)

Panel B: Sensitivity (positive - negative)

Raw data 0.005 0.052 0.058 -0.012 0.015 0.007 0.063 0.027 0.051 0.025 0.050
(0.038) (0.031) (0.034) (0.019) (0.018) (0.016) (0.020) (0.019) (0.019) (0.034) (0.021)

Z-score 0.012 0.156 0.174 -0.063 0.078 0.042 0.240 0.158 0.281 0.076 0.289
(0.096) (0.091) (0.102) (0.101) (0.094) (0.102) (0.075) (0.112) (0.102) (0.104) (0.125)

[0.096] [0.002]

Panel C: Monotonicity

Positive - Neutral (z-score) -0.051 0.261
(0.092) (0.078)
[0.237] [0.002]

Negative - Neutral (z-score) -0.207 0.021
(0.087) (0.078)
[0.056] [0.357]

Observations 422 739 390 388 381 412 758 360 411 352 346

Note: This table uses data from incentivized MTurk respondents with weak demand treatments. Panel A displays mean actions with standard errors in
the positive, negative and no-demand conditions respectively. Panel B presents the raw and z-scored sensitivity of behavior to our demand treatments.
Panel C displays the response to our positive and negative demand treatments separately, when “no demand” choices were also collected. Robust standard
errors are in parentheses. False-discovery rate adjusted p-values are in brackets, adjusting across tests within each task when testing the Monotonicity
assumption.
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Table 2—Response to strong demand treatments, all incentivized tasks

Time Risk Ambiguity Effort Effort Lying Dictator Ultimatum Ultimatum Trust Trust
Aversion 0 cent bonus 1 cent bonus Game Game 1 Game 2 Game 1 Game 2

Panel A: Unconditional Means

Positive demand 0.795 0.550 0.583 0.405 0.492 0.606 0.434 0.520 0.474 0.535 0.469
(0.024) (0.020) (0.024) (0.011) (0.011) (0.013) (0.015) (0.013) (0.014) (0.024) (0.017)

No demand 0.786 0.466 0.341 0.476 0.282
(0.025) (0.022) (0.012) (0.012) (0.015)

Negative demand 0.659 0.373 0.428 0.255 0.449 0.510 0.251 0.404 0.337 0.350 0.288
(0.028) (0.019) (0.023) (0.011) (0.011) (0.014) (0.014) (0.014) (0.015) (0.022) (0.015)

Panel B: Sensitivity (positive - negative)

Raw data 0.137 0.177 0.155 0.150 0.043 0.096 0.183 0.116 0.136 0.185 0.181
(0.037) (0.027) (0.033) (0.016) (0.016) (0.019) (0.021) (0.018) (0.020) (0.032) (0.023)

Z-score 0.349 0.528 0.462 0.783 0.229 0.604 0.694 0.684 0.750 0.563 1.058
(0.095) (0.082) (0.098) (0.083) (0.084) (0.118) (0.080) (0.109) (0.111) (0.097) (0.133)
[0.001] [0.001] [0.001] [0.020] [0.001]

Panel C: Monotonicity

Positive - Neutral (z-score) 0.022 0.252 0.333 0.084 0.574
(0.088) (0.088) (0.085) (0.088) (0.082)
[0.363] [0.001] [0.001] [0.159] [0.001]

Negative - Neutral (z-score) -0.327 -0.276 -0.450 -0.145 -0.120
(0.097) (0.086) (0.085) (0.086) (0.080)
[0.001] [0.001] [0.001] [0.101] [0.046]

Observations 727 728 404 731 714 365 770 409 421 382 371

Note: This table uses data from incentivized MTurk respondents with strong demand treatments. Panel A displays mean actions with standard errors in
the positive, negative and no-demand conditions respectively. Panel B presents the raw and z-scored sensitivity of behavior to our demand treatments.
Panel C displays the response to our positive and negative demand treatments separately, when “no demand” choices were also collected. Robust standard
errors are in parentheses. False-discovery rate adjusted p-values are in brackets, adjusting across tests within each task when testing the Monotonicity
assumption.
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Table 3—Bounding Treatment Effects

Conventional Weak Bounds Strong Bounds

Treatment Effect Lower Upper Lower Upper

Count 540.720 530.001 588.270 177.421 948.978
(66.763) (64.532) (61.499) (62.379) (64.148)

Count (z-scored) 0.686 0.673 0.747 0.225 1.205
(0.085) (0.082) (0.078) (0.079) (0.081)

Note: This table uses data from the real effort experiments with weak and strong demand treatments
(experiments 3 and 6). Column 1 shows conventional treatment effect estimates. Columns 2 to 6 show
lower and upper bounds estimated using weak and strong treatments. We apply the “ironing” procedure
described in section III.B when constructing the weak estimates. Robust standard errors in parentheses.
“Count” is the raw score from the experiment, Count (z-scored) is standardized using the negative
demand condition, pooled across incentive treatment arms.
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Table 4—Structural Estimates

Power cost of effort Exponential cost of effort

(1) (2) (3) (4) (5) (6)
Log Count Log Count Log Count Count Count Count

φ 0.175 0.249 0.205 0.300
(0.092) (0.095) (0.079) (0.066)

hL(0)pL(0) -0.735 -0.516 -0.525 -0.187
(0.172) (0.303) (0.191) (0.249)

hL(> 0)pL(> 0) -0.609 0.849
(2.194) (1.799)

hL(1)pL(1) -0.473 0.155
(1.110) (0.694)

hL(4)pL(4) -6.508 -6.600
(3.360) (1.963)

s 0.034 0.179 0.273 0.031 0.229 0.493
(0.051) (0.095) (0.126) (0.046) (0.096) (0.208)

k 4.7e-26 7.5e-24 6.5e-17 4.2e-08 2.1e-06 1.8e-04
(3.1e-25) (2.9e-23) (3.1e-16) (1.8e-07) (3.7e-06) (2.9e-04)

γ 7.260 6.583 4.433 6.5e-03 4.6e-03 2.3e-03
(2.216) (1.303) (1.707) (2.1e-03) (8.7e-04) (8.2e-04)

Observations 727 1691 1691 727 1691 1691
R-squared 0.122 0.166 0.166 0.167 0.204 0.206

Note: This table uses data from the the real effort experiment on MTurk with strong demand treatments.
Coefficients s and φ are measured in cents. s measures the respondents intrinsic motivation. φ measures
the monetary value of acting according to the experimental objective. γ is the effort cost curvature and k
is the scaling parameter. hL(ζ)pL(ζ) is latent demand in incentive condition ζ. hL(> 0)pL(> 0) is latent
demand in the combined 1-cent and 4-cent incentive conditions. Robust standard errors in parentheses.
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Table 5—Heterogeneity in response to weak and strong demand treatments (z-scored)

All Time Risk Ambiguity Effort Effort Lying Dictator Ultimatum Ultimatum Trust Trust
Games Aversion 0 cent bonus 1 cent bonus Game Game 1 Game 2 Game 1 Game 2

Panel A: Weak - Design Characteristics

Sensitivity × Incentive 0.073 0.149 -0.002
(0.085) (0.125) (0.115)

Observations 1963 970 993

Panel B: Weak - Respondent Characteristics

Sensitivity × Male 0.038 -0.028 0.057 0.069 0.305 0.033 0.060 0.029 -0.089 0.003 0.257 -0.239
(0.061) (0.174) (0.179) (0.203) (0.239) (0.236) (0.189) (0.146) (0.192) (0.185) (0.230) (0.229)

Observations 4450 422 473 390 388 381 412 515 360 411 352 346

Sensitivity × Attention 0.119 -0.402 -0.077 0.434 0.226 0.585 0.094 0.368 0.116 -0.398
(0.116) (0.395) (0.307) (0.504) (0.305) (0.328) (0.296) (0.230) (0.362) (0.301)

Observations 3681 422 473 390 412 515 360 411 352 346

Sensitivity × Representative sample 0.032 0.032 0.032
(0.084) (0.127) (0.110)

Observations 2125 1041 1084

Panel C: Strong - Design Characteristics

Sensitivity × Incentive -0.007 -0.063 0.196 0.072
(0.080) (0.132) (0.116) (0.121)

Observations 2989 994 996 999

Panel D: Strong - Respondent Characteristics

Sensitivity × Male -0.152 -0.212 -0.090 -0.382 0.075 0.005 -0.223 -0.201 -0.137 -0.144 0.098 -0.361
(0.064) (0.168) (0.160) (0.192) (0.197) (0.214) (0.217) (0.153) (0.187) (0.201) (0.216) (0.240)

Observations 4800 491 482 404 492 472 365 511 409 421 382 371

Sensitivity × Attention 0.117 0.319 0.471 -0.276 0.255 -0.024 -0.272 0.229 0.918 -0.091
(0.140) (0.393) (0.401) (0.414) (0.358) (0.530) (0.394) (0.538) (0.409) (0.311)

Observations 3836 491 482 404 365 511 409 421 382 371

Sensitivity × Representative sample 0.027 -0.121 0.176
(0.081) (0.118) (0.112)

Observations 2184 1070 1114

Note: Outcome variables are z-scored at the task level. Panels A and C display heterogeneous treatment effects by design characteristics, i.e. whether
choices are incentivized or hypothetical. Panels B and D display heterogeneous treatment effects by respondent characteristics: gender, attention and
population. “Male” equals one for males, “attention” equals one if the respondent passed the attention screener, “representative sample” equals one for
representative sample respondents.
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Table 6—Overview of Experiments

Experiment Sample Tasks Demand Treatments Real or Hypothetical

Experiment 1 (May
18, 2016 - May 30,
2016)

MTurk
(N=4,479)

Dictator Game, Investment
Game and Convex Time
Budgets

Strong positive demand,
strong negative demand
and no-demand treatment

Both real stakes and hy-
pothetical choices

Experiment 2 (July
5, 2016 - July 25,
2016)

MTurk
(N=2,950)

Dictator Game and Invest-
ment Game

Weak positive demand,
weak negative demand and
no-demand treatment

Both real stakes and hy-
pothetical choices

Experiment 3 (Aug
26, 2016 - Aug 27,
2016)

MTurk
(N=1,691)

Effort experiment with 1
cent bonus and Effort ex-
periment with no bonus.
Also effort experiment with
4 cent bonus (no demand
treatments were applied to
this group).

Strong positive, strong
negative and no-demand
treatment

Real stakes (real effort
experiment)

Experiment 4 (Aug
18, 2016 - Sep 1,
2016 7)

Research Now
Representative
online Panel
(N= 2,933)

Dictator Game and Invest-
ment Game

Strong positive demand,
strong negative demand,
weak positive demand and
weak negative demand and
no-demand treatment

Real stakes

Experiment 5 (Sep,
12, 2016 - Sep 20,
2016)

MTurk (N=
5,045)

Trust game (first and sec-
ond mover), Ultimatum
game (first and second
mover), Lying game, Am-
biguous Investment Game
and Convex Time Budgets

Strong positive demand,
strong negative demand,
weak positive demand and
weak negative demand

Real stakes

Experiment 6 (Sep,
19, 2016 - Sep 20,
2016)

MTurk
(N=769)

Effort experiment with 1
cent bonus, Effort experi-
ment with no bonus

Weak positive demand and
weak negative demand

Real stakes (real effort
experiment)

Experiment 7 (May
18, 2017 - May 20,
2017)

MTurk
(N=999)

Dictator Game and Invest-
ment Game

Within design: Task 1: no
demand treatment; task 2:
strong positive demand or
strong negative demand

Real stakes

Note: This table summarizes the key design features of each of the experiments. In experiment 5 for
convex time budgets we only employ the weak demand treatments, while for all other tasks in experiment
5 we employ both strong and weak demand treatments.
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Table 7—Details of Experimental Tasks

Task Description Sample Show
up
fee

Action space Payoffs Strong Demand Treatment:
“You will do us a favor if
you. . . ”

Weak Demand Treatment:
“We expect that participants who
are shown these instructions will. . . ”

Dictator
Game

Choose to split money
between yourself and
another participant.

Strong: MTurk between (N=1,503);
MTurk within (998); Rep. Sample
(N=899). Weak: MTurk between
(N=1,477); Rep. Sample (N=865).

$.25 a ∈ [0, 1] is frac-
tion of $1 sent to the
other participant.

Amount not sent (1− a). “. . . give more (less) to the other
participant than you normally
would.”

“. . . give more (less) to the other par-
ticipant than they normally would.”

Investment
Game

Choose how much to in-
vest in a risky project.

Strong: MTurk between (N=1,492);
MTurk within (1000); Rep Sample
(N=902). Weak: MTurk between
(N=1,473); Rep. Sample (N=883).

$.25 a ∈ [0, 1] is fraction
of $1 invested

$(1−a) + 3a with probabil-
ity 0.4, $(1− a) otherwise.

“. . . invest more (less) than you
normally would.”

“. . . invest more (less) than they nor-
mally would.”

Ambiguous
Investment
Game

Choose to how much to
invest in an uncertain
project.

Strong: MTurk (N= 404). Weak:
MTurk (N= 390).

$.25 a ∈ [0, 1] is fraction
of $1 invested

$(1− a) + 3a with unstated
probability, $(1 − a) other-
wise.

“. . . invest more (less) than you
normally would.”

“. . . invest more (less) than they nor-
mally would.”

Convex
Time Bud-
gets

Choose between receiv-
ing money today vs.
money in seven days.

Strong: MTurk (N=1,484); Rep.
Sample (N=899). Weak: MTurk
(N=422).

$.25 a ∈ [0, 1.2] is the
amount to be re-
ceived in 7 days

$(1 − a)/1.2 is received
within 24 hours, and $a is
received in 7 days.

“. . . choose to receive more
(less) in seven days than you
normally would.”

“. . . choose to receive more (less)
in seven days than they normally
would.”

Effort: No
bonus

Alternately press the a
and b button without
receiving any bonus.

Strong: MTurk (N=731). Weak:
MTurk (N=388).

$1 a ∈ [0, 4000] is num-
ber of a-b button
presses

No payoffs beyond show-up
fee

“. . . work harder (less hard)
than you normally would.”

“. . . work harder (less hard) than
they normally would.”

Effort: 1-
cent bonus

Alternately press the a
and b button, receiving
1 cent per 100 points.

Strong: MTurk (N=714). Weak:
MTurk (N=381).

$1 a ∈ [0, 4000] is num-
ber of a-b button
presses

1 cent per 100 button
presses.

“. . . work harder (less hard)
than you normally would.”

“. . . work harder (less hard) than
they normally would.”

Trust Game
1st mover

Choose to send an
amount of money to the
other player.

Strong: MTurk (N=382). Weak:
MTurk (N=352).

$.25 a ∈ [0, .2, .4, .6, .8, 1]
is fraction of $1 sent

$2a is sent to second mover,
who decides how much to
send back. $(1−a) not sent
is kept with certainty.

“. . . send more (less) to the
other participant than you nor-
mally would.”

“. . . send more (less) to the other
participant than they normally
would.”

Trust Game
2nd mover

Choose to send back
some money to the
other player. (Strategy
method)

Strong: MTurk (N=371). Weak:
MTurk (N=346).

$.25 a ∈ [0, 1.2] is amount
returned, averaged
over each possible
nonzero amount
received.

Amount not sent back. “. . . send back more (less) to the
other participant than you nor-
mally would.”

“. . . send back more (less) to the
other participant than they normally
would.”

Ultimatum
Game 1st
mover

Offer a split to the other
player.

Strong: MTurk (N=409). Weak:
MTurk (N=360).

$.25 a ∈ [0, 1] is offer to
the other player

1−a if the offer is accepted,
0 if it is rejected.

“. . . offer more (less) to the
other participant than you nor-
mally would.”

“. . . offer more (less) to the other
participant than they normally
would.”

Ultimatum
Game 2nd
mover

Specify the smallest of-
fer you would accept.

Strong: MTurk (N=421). Weak:
MTurk (N=411).

$.25 a ∈ [0, 1] is min. ac-
ceptable offer: reject
all offers below this
amount.

Amount received if it ex-
ceeds a, otherwise zero.

“. . . require a higher (lower)
minimum amount than you nor-
mally would.”

“. . . require a higher (lower) mini-
mum amount than they normally
would.”

Lying Report the number of
“Heads” in 10 coinflips.

Strong: MTurk (N=365). Weak:
MTurk (N=412).

$.25 a ∈ [0, 1, . . . , 10] is
number of heads.

10 cents per “Heads” re-
ported: $0.1a.

“. . . report more (fewer) heads
than you normally would.”

“. . . report more (fewer) heads than
they normally would.”
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A. Additional Figures and Tables
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Figure A1. Interface example

Note: We present two examples of the experimental interface, taken from the dictator game. The first
frame corresponds to the real stakes, “no demand” condition, and the second frame to the real stakes,
positive demand condition.
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Figure A2. Distribution of z-scored actions by task and demand treatment, weak treatments
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Note: This figure uses data from incentivized MTurk respondents with weak demand treatments, and displays the cumulative distribution function of
z-scored actions by task and demand treatment arm.
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Figure A3. Distribution of z-scored actions by task and demand treatment, strong treatments
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Note: This figure uses data from incentivized MTurk respondents with strong demand treatments, and displays the cumulative distribution function of
z-scored actions by task and demand treatment arm.
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Table A1—Controlling for demand

Conventional Sensitivity difference Strong Weak

Treatment Effect (Strong 1-cent - Strong 0-cent) Midpoint positive-positive negative-negative

Count 540.720 430.009 494.774 588.270 530.001
(66.763) (89.477) (49.321) (61.499) (64.532)

Count (z-scored) 0.686 0.546 0.628 0.747 0.673
(0.085) (0.114) (0.063) (0.078) (0.082)

Note: This table uses data from the real effort experiments (experiment 3 and experiment 6). We follow the “controlling for demand” procedure outlined
in Section III.D to estimate the treatment effect of incentives on effort provision. Column (1) shows the conventional treatment effect estimate (data from
experiment 3). Column (2) tests for differences in sensitivity to our strong demand treatments between the 0-cent and 1-cent groups, and finds a significant
difference. Therefore in column (3) we apply the “midpoint” technique with strong demand treatments to estimate the treatment effect. Columns (4)
and (5) approximate the treatment effect using same-signed weak demand treatments. We apply the “ironing” procedure described in section III.B when
constructing these estimates. Count is the raw-score of points scored in the real effort task. Count (z-scored) uses the mean and standard deviation from
the negative demand condition. Robust standard errors in parentheses. Note that strong and weak treatment data were collected in separate experiments.
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Table A2—Results from the Within Design

Dictator Risk

Within Between Difference Within Between Difference

Panel A: Unconditional Means

Positive demand 0.384 0.434 -0.050 0.560 0.550 0.010
(0.017) (0.015) (0.023) (0.021) (0.020) (0.029)

No demand 0.273 0.282 -0.010 0.448 0.466 -0.018
(0.011) (0.015) (0.019) (0.015) (0.022) (0.027)

Negative demand 0.195 0.251 -0.056 0.318 0.373 -0.055
(0.014) (0.014) (0.020) (0.019) (0.019) (0.027)

Panel B: Sensitivity (positive - negative)

Raw data 0.189 0.183 0.006 0.242 0.177 0.065
(0.022) (0.021) (0.031) (0.029) (0.027) (0.040)

Z-score 0.794 0.745 0.048 0.709 0.520 0.188
(0.093) (0.086) (0.127) (0.084) (0.080) (0.116)

Panel C: Monotonicity

Positive - Neutral (z-score) 0.514 0.617 -0.103 0.377 0.248 0.129
(0.044) (0.088) (0.129) (0.041) (0.087) (0.124)

Negative - Neutral (z-score) -0.380 -0.128 -0.251 -0.427 -0.272 -0.155
(0.045) (0.086) (0.123) (0.042) (0.084) (0.119)

Observations 499 770 1269 500 728 1228

Note: This table uses data from the within design (experiment 7) and incentivized choices from the
dictator game and the investment game in experiment 1. These experiments employ strong demand
treatments. Panel A displays the unconditional means by task and demand treatment arm. Panel B
displays the estimates of sensitivity. Panel C tests Monotonicity. Note that estimates from Panel C do
not add up to the sensitivity estimates from Panel B as sensitivity is estimated between participants
while monotonicity tests are within-participant.
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Table A3—Confidence intervals for bounds on natural actions

Time Risk Ambiguity Effort Effort Lying Dictator Ultimatum Ultimatum Trust Trust
Aversion 0 cent bonus 1 cent bonus Game Game 1 Game 2 Game 1 Game 2

Panel A: Weak Demand

Interval [0.766, 0.770] [0.472, 0.524] [0.499, 0.557] [0.343, 0.331] [0.469, 0.484] [0.469, 0.484] [0.318, 0.382] [0.443, 0.470] [0.362, 0.413] [0.430, 0.455] [0.348, 0.398]
95% CI on interval [0.716, 0.821] [0.438, 0.561] [0.459, 0.597] [0.316, 0.358] [0.448, 0.504] [0.510, 0.557] [0.296, 0.405] [0.422, 0.493] [0.342, 0.436] [0.387, 0.494] [0.328, 0.426]
95% CI on parameter [0.724, 0.812] [0.445, 0.553] [0.468, 0.588] [0.320, 0.353] [0.452, 0.499] [0.514, 0.553] [0.301, 0.400] [0.427, 0.488] [0.346, 0.431] [0.396, 0.486] [0.332, 0.420]

Observations 422 739 390 388 381 412 758 360 411 352 346

Panel B: Strong Demand

Interval [0.659, 0.795] [0.373, 0.550] [0.428, 0.583] [0.255, 0.405] [0.449, 0.492] [0.449, 0.492] [0.251, 0.434] [0.404, 0.520] [0.337, 0.474] [0.350, 0.535] [0.288, 0.469]
95% CI on interval [0.612, 0.834] [0.342, 0.583] [0.391, 0.622] [0.236, 0.424] [0.432, 0.511] [0.487, 0.626] [0.227, 0.459] [0.381, 0.541] [0.314, 0.496] [0.314, 0.574] [0.263, 0.498]
95% CI on parameter [0.622, 0.826] [0.349, 0.576] [0.399, 0.613] [0.240, 0.420] [0.436, 0.507] [0.493, 0.622] [0.232, 0.454] [0.386, 0.536] [0.319, 0.491] [0.322, 0.565] [0.269, 0.491]

Observations 727 728 404 731 714 365 770 409 421 382 371

Note: This table uses data from incentivized MTurk respondents with strong and weak demand treatments. It first presents estimated bounds on the
natural action, then 95 percent confidence intervals on those bounds, then 95 percent confidence intervals on the parameter (natural action) contained in
the bounds.
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Table A4—Confidence intervals for bounds on treatment effects

Treatment Effect:
Score in Effort Task

Weak treatments

Interval [530.001, 588.270]
95% CI on interval [410.310, 701.645]
95% CI on parameter [434.271, 678.736]

Observations 769

Strong treatments

Interval [177.421, 948.978]
95% CI on interval [74.817, 1054.492]
95% CI on parameter [97.479, 1031.187]

Observations 1445

Note: This table uses data from incentivized MTurk respondents with weak and strong demand treat-
ments (experiments 3 and 6). It first presents estimated bounds on the treatment effect of incentives on
effort, then 95 percent confidence intervals on those bounds, then 95 percent confidence intervals on the
parameter (treatment effect) contained in the bounds.

Table A5—Results from the Within Design: Compliers and Defiers

Dictator Risk

All Compliers Defiers All Compliers Defiers

Positive - Neutral (z-score) 0.514 0.777 -0.402 0.377 0.704 -0.601
(0.044) (0.055) (0.122) (0.041) (0.052) (0.100)

Observations 265 179 7 247 146 16

Negative - Neutral (z-score) -0.380 -0.796 1.028 -0.427 -0.721 0.529
(0.045) (0.059) (0.329) (0.042) (0.049) (0.199)

Observations 234 122 8 253 161 16

Note: This table uses data from the within design (experiment 7). The outcome variable is the change in
standardized action between task 1 and task 2. We separately present the results for the whole sample,
compliers, and defiers.
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Table A6—Within Design: Defier-corrected bounds and confidence intervals

Risk Dictator

Panel A: Standard Bounds

Interval [0.318, 0.560] [0.195, 0.384]
95% CI on interval [0.286, 0.595] [0.172, 0.412]
95% CI on parameter [0.293, 0.587] [0.177, 0.406]

Observations 500 499

Panel B: Adjusted Bounds

Interval [0.308, 0.571] [0.185, 0.392]
95% CI on interval [0.277, 0.606] [0.163, 0.420]
95% CI on parameter [0.284, 0.598] [0.168, 0.414]

Observations 500 499

Note: This table uses data from the within design (experiment 7). In Panel A we compute our standard
bounds and confidence intervals. In Panel B we compute the adjusted bounds which take into account
defier behavior.
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Table A7—Belief about the experimental objective in response to the weak demand treatments

Belief: Belief: Belief: Ambiguity Belief: Effort Belief: Effort Belief: Belief: Dictator Belief: Ult. Belief: Ult. Belief: Trust Belief: Trust
Time Risk Aversion 0 cent bonus 1 cent bonus Lying Game Game 1 Game 2 Game 1 Game 2

Panel A: Unconditional Means

Positive demand 0.832 0.757 0.760 0.788 0.979 0.779 0.540 0.698 0.688 0.612 0.669
(0.026) (0.028) (0.031) (0.030) (0.010) (0.028) (0.032) (0.034) (0.032) (0.036) (0.038)

No demand 0.620 0.321
(0.030) (0.030)

Negative demand 0.603 0.370 0.330 0.277 0.358 0.467 0.234 0.238 0.383 0.112 0.083
(0.034) (0.031) (0.034) (0.032) (0.035) (0.036) (0.026) (0.032) (0.034) (0.024) (0.020)

Panel B: Sensitivity (Positive - Negative)

Raw data 0.229 0.388 0.430 0.511 0.621 0.312 0.306 0.461 0.304 0.500 0.585
(0.042) (0.042) (0.046) (0.044) (0.036) (0.046) (0.041) (0.047) (0.047) (0.044) (0.043)

Z-score 0.471 0.776 0.909 1.117 1.240 0.627 0.678 0.994 0.633 1.092 1.417
(0.087) (0.084) (0.096) (0.095) (0.073) (0.092) (0.091) (0.101) (0.098) (0.095) (0.104)

[0.001] [0.001]

Panel C: Monotonicity

Positive - Neutral (z-score) 0.274 0.485
(0.082) (0.096)
[0.001] [0.001]

Negative - Neutral (z-score) -0.501 -0.193
(0.087) (0.088)
[0.001] [0.009]

Observations 422 739 390 388 381 412 758 360 411 352 346

Note: This table uses data from incentivized MTurk respondents with weak demand treatments. The outcome variables take value one if the respondents
believed that the experimenter wanted a high action. Panel A displays mean beliefs with standard errors in the positive, negative and no-demand conditions
respectively. Panel B presents the raw and z-scored sensitivity of beliefs to our demand treatments. Panel C displays the response to our positive and
negative demand treatments separately, when “no demand” choices were also collected. Robust standard errors are in parentheses. False-discovery rate
adjusted p-values are in brackets, adjusting across tests within each task.
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Table A8—Belief about the experimental objective in response to the strong demand treatments

Belief: Belief: Belief: Ambiguity Belief: Effort Belief: Effort Belief: Belief: Dictator Belief: Ult. Belief: Ult. Belief: Trust Belief: Trust
Time Risk Aversion 0 cent bonus 1 cent bonus Lying Game Game 1 Game 2 Game 1 Game 2

Panel A: Unconditional Means

Positive demand 0.802 0.705 0.701 0.776 0.942 0.815 0.651 0.572 0.664 0.407 0.385
(0.025) (0.030) (0.032) (0.027) (0.015) (0.028) (0.029) (0.034) (0.032) (0.035) (0.036)

No demand 0.720 0.537 0.485 0.888 0.355
(0.029) (0.032) (0.032) (0.020) (0.030)

Negative demand 0.622 0.424 0.335 0.296 0.511 0.562 0.244 0.309 0.357 0.295 0.217
(0.031) (0.031) (0.033) (0.029) (0.033) (0.037) (0.028) (0.033) (0.033) (0.034) (0.030)

Panel B: Sensitivity (Positive - Negative)

Raw data 0.181 0.281 0.366 0.480 0.431 0.252 0.407 0.263 0.306 0.112 0.168
(0.040) (0.043) (0.046) (0.039) (0.036) (0.047) (0.040) (0.047) (0.047) (0.049) (0.047)

Z-score 0.372 0.563 0.773 1.050 0.861 0.507 0.901 0.567 0.637 0.245 0.406
(0.083) (0.087) (0.098) (0.086) (0.073) (0.094) (0.089) (0.102) (0.097) (0.106) (0.114)
[0.001] [0.001] [0.001] [0.001] [0.001]

Panel C: Monotonicity

Positive - Neutral (z-score) 0.169 0.337 0.635 0.108 0.654
(0.079) (0.088) (0.092) (0.050) (0.092)
[0.023] [0.001] [0.001] [0.011] [0.001]

Negative - Neutral (z-score) -0.203 -0.226 -0.415 -0.754 -0.247
(0.089) (0.089) (0.095) (0.077) (0.090)
[0.022] [0.003] [0.001] [0.001] [0.002]

Observations 727 728 404 731 714 365 770 409 421 382 371

Note: This table uses data from incentivized MTurk respondents with strong demand treatments. The outcome variables take value one if the respondents
believed that the experimenter wanted a high action. Panel A displays mean beliefs with standard errors in the positive, negative and no-demand conditions
respectively. Panel B presents the raw and z-scored sensitivity of beliefs to our demand treatments. Panel C displays the response to our positive and
negative demand treatments separately, when “no demand” choices were also collected. Robust standard errors are in parentheses. False-discovery rate
adjusted p-values are in brackets, adjusting across tests within each task.
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Table A9—Belief about the experimental hypothesis in response to the weak demand treatments

Belief: Belief: Belief: Ambiguity Belief: Effort Belief: Effort Belief: Belief: Dictator Belief: Ult. Belief: Ult. Belief: Trust Belief: Trust
Time Risk Aversion 0 cent bonus 1 cent bonus Lying Game Game 1 Game 2 Game 1 Game 2

Panel A: Unconditional Means

Positive demand 0.788 0.749 0.704 0.782 0.963 0.871 0.464 0.726 0.732 0.628 0.682
(0.028) (0.028) (0.033) (0.030) (0.014) (0.023) (0.032) (0.033) (0.031) (0.036) (0.038)

No demand 0.534 0.160
(0.031) (0.024)

Negative demand 0.458 0.261 0.222 0.231 0.326 0.528 0.106 0.354 0.359 0.296 0.182
(0.034) (0.029) (0.030) (0.030) (0.034) (0.036) (0.019) (0.036) (0.034) (0.035) (0.028)

Panel B: Sensitivity (Positive - Negative)

Raw data 0.331 0.488 0.482 0.552 0.637 0.343 0.358 0.373 0.372 0.333 0.500
(0.044) (0.040) (0.044) (0.042) (0.037) (0.042) (0.037) (0.049) (0.046) (0.050) (0.047)

Z-score 0.681 0.978 0.982 1.244 1.286 0.706 0.836 0.825 0.750 0.731 1.161
(0.092) (0.080) (0.090) (0.096) (0.074) (0.087) (0.086) (0.108) (0.092) (0.110) (0.109)

[0.001] [0.001]

Panel C: Monotonicity

Positive - Neutral (z-score) 0.431 0.708
(0.084) (0.092)
[0.001] [0.001]

Negative - Neutral (z-score) -0.547 -0.128
(0.084) (0.071)
[0.001] [0.024]

Observations 422 739 390 388 381 412 758 360 411 352 346

Note: This table uses data from incentivized MTurk respondents with weak demand treatments. The outcome variables take value one if the respondents
believed that the experimenter expected a high action. Panel A displays mean beliefs with standard errors in the positive, negative and no-demand
conditions respectively. Panel B presents the raw and z-scored sensitivity of beliefs to our demand treatments. Panel C displays the response to our
positive and negative demand treatments separately, when “no demand” choices were also collected. Robust standard errors are in parentheses. False-
discovery rate adjusted p-values are in brackets, adjusting across tests within each task.
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Table A10—Belief about the experimental hypothesis in response to the strong demand treatments

Belief: Belief: Belief: Ambiguity Belief: Effort Belief: Effort Belief: Belief: Dictator Belief: Ult. Belief: Ult. Belief: Trust Belief: Trust
Time Risk Aversion 0 cent bonus 1 cent bonus Lying Game Game 1 Game 2 Game 1 Game 2

Panel A: Unconditional Means

Positive demand 0.727 0.595 0.593 0.727 0.934 0.788 0.454 0.670 0.659 0.578 0.588
(0.028) (0.033) (0.034) (0.029) (0.016) (0.030) (0.030) (0.032) (0.032) (0.035) (0.037)

No demand 0.682 0.484 0.423 0.855 0.143
(0.030) (0.032) (0.032) (0.023) (0.022)

Negative demand 0.639 0.420 0.400 0.267 0.576 0.625 0.186 0.284 0.435 0.290 0.243
(0.031) (0.031) (0.035) (0.028) (0.033) (0.037) (0.025) (0.032) (0.035) (0.034) (0.031)

Panel B: Sensitivity (Positive - Negative)

Raw data 0.089 0.175 0.193 0.459 0.358 0.163 0.268 0.386 0.224 0.288 0.345
(0.042) (0.045) (0.049) (0.040) (0.036) (0.047) (0.039) (0.046) (0.047) (0.049) (0.048)

Z-score 0.183 0.351 0.393 1.036 0.722 0.336 0.624 0.855 0.451 0.634 0.801
(0.087) (0.090) (0.100) (0.091) (0.074) (0.097) (0.092) (0.101) (0.095) (0.107) (0.112)
[0.118] [0.001] [0.001] [0.001] [0.001]

Panel C: Monotonicity

Positive - Neutral (z-score) 0.093 0.222 0.685 0.159 0.725
(0.085) (0.091) (0.097) (0.056) (0.087)
[0.268] [0.015] [0.001] [0.001] [0.001]

Negative - Neutral (z-score) -0.090 -0.128 -0.350 -0.563 0.101
(0.090) (0.089) (0.096) (0.080) (0.077)
[0.268] [0.052] [0.001] [0.001] [0.069]

Observations 727 728 404 731 714 365 770 409 421 382 371

Note: This table uses data from incentivized MTurk respondents with strong demand treatments. The outcome variables take value one if the respondents
believed that the experimenter expected a high action. Panel A displays mean beliefs with standard errors in the positive, negative and no-demand
conditions respectively. Panel B presents the raw and z-scored sensitivity of beliefs to our demand treatments. Panel C displays the response to our
positive and negative demand treatments separately, when “no demand” choices were also collected. Robust standard errors are in parentheses. False-
discovery rate adjusted p-values are in brackets, adjusting across tests within each task.
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Table A11—Overview of studies varying anonymity in dictator games

Study Description of the treat-
ment

Sample Sample
Size

Stake Size Effect Size Statistical
significance

Hoffman et al. (1994) Double blind compared to sin-
gle blind

Student sample from the Univer-
sity of Arizona

101 $10 61 percent reduction
in giving

p<0.01

Hoffman, McCabe and
Smith (1996)

Double blind compared to sin-
gle blind

Student sample from the Univer-
sity of Arizona

114 $10 37 percent reduction
in giving

p<0.01

Bolton, Katok and
Zwick (1998)

Double blind compared to sin-
gle blind

Student sample at Penn State
University

60 $5 22 percent increase
in giving

p>0.1

Barmettler, Fehr and
Zehnder (2012)

Double blind compared to sin-
gle blind

Student samples from the Uni-
versity of Zurich (UZH)

103 20 Swiss
Frank ($22)

16.8 percent reduc-
tion in giving

p>0.1

Cilliers, Dube and Sid-
diqi (2015)

Presence of non-foreign exper-
imenter vs.presence of a white
foreign experimenter

Poor households from Sierra
Leone

708 4000 Leones
(approxi-
mately $1)

16 percent reduction
in giving

p<0.01

Our estimates based on demand treatments

de Quidt et al. (2018) Weak negative demand treat-
ment compared to weak posi-
tive demand treatment

MTurk respondents 515 $1 17 percent reduction
in giving

p<0.01

de Quidt et al. (2018) Strong negative demand
treatment compared to strong
positive demand treatment

MTurk respondents 511 $1 42 percent reduction
in giving

p<0.01

Note: This table provides an overview of dictator game studies which vary the anonymity of experimenter-subject interactions and the presence of a
foreign (white) experimenter. Our estimates of treatment effects for the studies by Hoffman et al. (1994) and Hoffman, McCabe and Smith (1996) are
based on inspection of the cumulative distribution functions and and probability distribution functions reported in the paper (details of our calculations
are available upon request). These papers did not report mean behavior across treatment arms. In Hoffman et al. (1994) we compare behavior in “Double
Blind treatment 1” and “Double Blind treatment 2” to behavior in the “Dictator random entitlement, exchange”. In Hoffman, McCabe and Smith (1996)
we compare behavior in “Double Blind treatment 1” and “Double Blind treatment 2” to behavior in the “Single Blind 1” condition. In Bolton, Katok and
Zwick (1998) we compare behavior in the “Anonymity” condition to behavior in the “6card1game” condition. In Barmettler, Fehr and Zehnder (2012)
we compare behavior in the “Double Anonymity” condition to behavior in the “Single Anonymity” condition. In Cilliers, Dube and Siddiqi (2015) we
compare behavior when a white foreigner was or was not present in the session. The average reduction in giving across the studies using equal weights is
a 21.76 percent, or 20.37 percent when weighted by sample size.

14



Table A12—Overview of standard deviations across tasks

Time Risk Ambiguity Effort Effort Lying Dictator Ultimatum Ultimatum Trust Trust
Aversion 0 cent bonus 1 cent bonus Game Game 1 Game 2 Game 1 Game 2

Panel A: Weak Demand

Positive demand 0.385 0.348 0.341 0.193 0.165 0.170 0.222 0.189 0.194 0.314 0.217

No demand . 0.339 . . . . 0.234 . . . .

Negative demand 0.389 0.317 0.334 0.190 0.178 0.158 0.226 0.170 0.182 0.329 0.172

Panel B: Strong Demand

Positive demand 0.379 0.331 0.340 0.177 0.179 0.172 0.267 0.184 0.202 0.334 0.234

No demand 0.386 0.340 . 0.182 0.184 . 0.246 . . . .

Negative demand 0.437 0.322 0.319 0.176 0.162 0.183 0.229 0.189 0.209 0.291 0.205

Note: This table uses data from incentivized MTurk respondents with weak and strong demand treatments and displays the standard deviations across
the different demand treatment arms.
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B. Theoretical Appendix

B1. Proof of Proposition 1 (Monotonicity)

We require that a+(ζ) ≥ aL(ζ) ≥ a−(ζ). We are therefore interested in the sign

of φ(E[h|hT , hL(ζ)]− E[h|hL(ζ)]). We have:

φ(E[h|hT , hL(ζ)]− E[h|hL(ζ)]) = φ

(
hL(ζ)pL(ζ) + hT pT

1 + hL(ζ)pL(ζ)hT pT
− hL(ζ)pL(ζ)

)
= φhT pT

(1− hL(ζ)2pL(ζ)2)

1 + hL(ζ)pL(ζ)hT pT

Because we assumed that pL(ζ) < 1, this expression has the same sign as

φhT pT . We want to show that φ(E[h|hT = 1, hL(ζ)] − E[h|hL(ζ)]) ≥ 0 and

φ(E[h|hT = −1, hL(ζ)] − E[h|hL(ζ)]) ≤ 0. This follows trivially when pT = 0.

When pT > 0 if follows if and only if φ ≥ 0.

B2. Proof of Proposition 2 (Bounding)

In the Bayesian model, given φ ≥ 0 (Monotonicity), the action is larger or

smaller than a(ζ) when φE[h|hT , hL] ≥ 0 or φE[h|hT , hL] ≤ 0 respectively. Given

that φ ≥ 0, we need E[h|hT = 1, hL] ≥ 0 and E[h|hT = −1, hL] ≤ 0. This is

guaranteed if hT and hL have the same sign, so we simply need to check whether it

holds when the demand treatment and latent demand are in opposite directions,

i.e. E[h|hT = 1, hL = −1] ≥ 0 and E[h|hT = −1, hL = 1] ≤ 0. Given our

restriction pL(ζ) < 1, inspection of (7) reveals that these conditions hold if and

only if pT ≥ pL(ζ), i.e. the decision-maker perceives the demand treatment as at

least as informative about h as the latent demand signal.

B3. Conditions for Monotone Sensitivity

Assumption 3 (Monotone Sensitivity) assumes that sensitivity S(ζ) = a+(ζ)−
a−(ζ) is (strictly) monotone in the size of the latent demand effect

∣∣aL(ζ)− a(ζ)
∣∣.

Here we examine cases under which that is and is not the case. We assume

throughout that Assumptions 1 and 2 hold.

16



Variation driven by φ.

We are interested in how φ affects latent demand (d
∣∣aL(ζ)− a(ζ)

∣∣ /dφ) and

sensitivity (dS(ζ)/dφ). From (5) we obtain:

d(aL(ζ)− a(ζ))

dφ
= − hL(ζ)pL(ζ)

v11(aL(ζ), ζ)

which has the same sign as hL(ζ), allowing us to write
d|aL(ζ)−a(ζ)|

dφ = − pL(ζ)
v11(aL(ζ),ζ)

≥
0.

Turning to sensitivity, we have:

dS(ζ)

dφ
=
da+(ζ)

dφ
− da−(ζ)

dφ

= − 1

v11(a+(ζ), ζ)

hL(ζ)pL(ζ) + pT

1 + hL(ζ)pL(ζ)pT
+

1

v11(a−(ζ), ζ)

hL(ζ)pL(ζ)− pT

1− hL(ζ)pL(ζ)pT

By Assumption 2, hL(ζ)pL(ζ)+pT ≥ 0 and hL(ζ)pL(ζ)+pT ≤ 0, so both terms

are positive, i.e. dS(ζ)
dφ ≥ 0. Therefore Monotone Sensitivity holds and any set of

environments that differ only in φ constitutes a comparison class, i.e. for such

environments, sensitivity is informative about the magnitude of latent demand

effects.

EXAMPLE 2: Suppose participant pool A is more concerned for pleasing the

experimenter than participant pool B. Then latent demand effects and sensitivity

will be larger in magnitude in participant pool A.

Variation driven by v.

Suppose that ζ can be separated into a parameter, z, and a remainder term, ζ ′,

that v is differentiable in z and that φ, hL and pL do not depend on z. z could be

a preference parameter (e.g. risk aversion) or a design parameter (e.g. the scale

of incentives). We write U(a, ζ ′, z) = v(a, ζ ′, z) + aφ(ζ ′)E[h|ζ ′] and modify the
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first-order conditions accordingly.

d(aL(ζ ′, z)− a(ζ ′, z))

dz
=
daL(ζ ′, z)

dz
− da(ζ ′, z)

dz

= −
[
v13(aL(ζ ′, z), ζ ′, z)

v11(aL(ζ ′, z), ζ ′, z)
− v13(a(ζ ′, z), ζ ′, z)

v11(a(ζ ′, z), ζ ′, z)

]
dS(ζ ′, z)

dz
= −

[
v13(a+(ζ ′, z), ζ ′, z)

v11(a+(ζ ′, z), ζ ′, z)
− v13(a−(ζ ′, z), ζ ′, z)

v11(a−(ζ ′, z), ζ ′, z)

]
It is clear from inspecting these conditions that we need to know how v13/v11

varies with a, i.e.:

dv13(a,ζ′,z)
v11(a,ζ′,z)

da
=
v11(a, ζ ′, z)v113(a, ζ ′, z)− v111(a, ζ ′, z)v13(a, ζ ′, z)

v11(a, ζ ′, tz)

It is difficult to make general statements about these objects for general utility

functions, so we focus attention on two special cases of interest.

Multiplicative separability.

Suppose that v(a, ζ ′, z) = ν(a, ζ ′)f(z) and define z such that f ′(z) > 0. Then

d
(
aL(ζ ′, z)− a(ζ ′, z)

)
dz

= −f ′(z)
[
ν1(aL(ζ ′, z), ζ ′)

ν11(aL(ζ ′, z), ζ ′)
− ν1(a(ζ ′, z), ζ ′)

ν11(a(ζ ′, z), ζ ′)

]
= −f ′(z) ν1(aL(ζ ′, z), ζ ′)

ν11(aL(ζ ′, z), ζ ′)

Since by concavity ν1(a, ζ ′) > 0 for a < a(ζ ′, z) and ν1(a, ζ ′) < 0 for a > a(ζ ′, z),

we have
d|aL(ζ′,z)−a(ζ′,z)|

dz ≤ 0. Similarly

dS(ζ)

dz
= −f ′(z)

[
ν1(a+(ζ ′, z), ζ ′)

ν11(a+(ζ ′, z), ζ ′)
− ν1(a−(ζ ′, z), ζ ′)

ν11(a−(ζ ′, z), ζ ′)

]

Since ν1(a+(ζ ′, z), ζ ′) ≤ 0 and ν1(a−(ζ ′, z), ζ ′) ≥ 0, we have dS(ζ)
dz ≤ 0. Therefore

Monotone Sensitivity holds and any set of environments that varies only in z is

a valid comparison set.

Intuitively, this case captures changes in the slope of payoffs that leave the opti-

mal natural action unchanged. For example, an increase in the scale of incentives

that makes the payoff function “more concave” around the natural action makes
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deviating from the natural action more costly and so decreases the magnitude of

latent demand and sensitivity.

EXAMPLE 3 (Belief scoring): Consider a belief-reporting task rewarded by a

quadratic scoring rule. A risk-neutral participant reports a belief, a, which is the

probability of an event A. He is paid z
2

[
1− (I[A]− a)2

]
where I[A] = 1 if A is true

and 0 otherwise. The utility function is U(a, ζ ′, z) = z
2

[
1− µ(1− a)2 − (1− µ)(−a)2

]
+

aφ(ζ ′)E[h|ζ ′], so f(z) = z. The optimal action solves z [µ(1− a∗)− (1− µ)a∗] +

φ(ζ ′)E[h|ζ ′] = 0 or a∗ = µ+ φ(ζ′)E[h|ζ′]
z . Increases in z are equivalent to decreases

in φ and decrease both the magnitude of latent demand effects, and sensitivity.

Additive separability.

Suppose that v(a, ζ ′, z) = v(a, ζ ′) + af(z) and define z such that f ′(z) > 0.

Then:

d(aL(ζ ′, z)− a(ζ ′, z))

dz
= −f ′(z)

[
1

ν11(aL(ζ ′, z), ζ ′)
− 1

ν11(a(ζ ′, z), ζ ′)

]
and

dS(ζ)

dz
= −f ′(z)

[
1

ν11(a+(ζ ′, z), ζ ′)
− 1

ν11(a−(ζ ′, z), ζ ′)

]
What matters in this case is how the concavity of v (and therefore ν) with re-

spect to a varies with a. Suppose ν111 < 0, so ν11 is decreasing in a, i.e. con-

cavity is increasing. Then dS(ζ)
dz < 0, i.e. increases in z decrease sensitivity.

If aL(ζ ′, z) > a(ζ ′, z) then d(aL(ζ′,z)−a(ζ′,z))
dz < 0 and if aL(ζ ′, z) < a(ζ ′, z) then

d(aL(ζ′,z)−a(ζ′,z))
dz > 0, so

d|aL(ζ′,z)−a(ζ′,z)|
dz < 0 and Monotone Sensitivity holds.

Monotone Sensitivity also holds (with the inequalities reversed) for ν111 > 0.

EXAMPLE 4 (Effort provision): A participant performs a real-effort task for

piece rate z with cost of effort C(a), C ′ > 0,C ′′ > 0, C ′′′ > 0. U(a, ζ ′, z) = za−
C(a) + aφ(ζ ′)E[h|ζ ′]. The optimal action a∗ solves z−C ′(a∗) +φ(ζ ′)E[h|ζ ′] = 0.

As z increases, a∗ increases and responsiveness to latent demand or demand treat-

ments decreases.

Variation driven by inattention.

Suppose that with some probability ξ the participant is an attentive type who

pays careful attention to the decision-making environment, and with probability
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1−ξ, he is inattentive. When inattentive, he takes some action aI(ζ). aI(ζ) might

be equal to a(ζ), in which case the participant is only inattentive to experimenter

demand, but it might differ if the participant is also inattentive to other design

features.

While until now we have treated the actions as those of a representative agent,

for this analysis it is more natural to work with expected or average actions over a

sample. Denote by ā(ζ) = ξa(ζ)+(1−ξ)aI(ζ) the expected natural action, define

āL(ζ), ā+(ζ), ā−(ζ) equivalently and let S̄(ζ) = ā+(ζ)−ā−(ζ). The latent demand

effect is now equal to
∣∣āL(ζ)− ā(ζ)

∣∣ = ξ
∣∣aL(ζ)− a(ζ)

∣∣, while S̄(ζ) = ξS(ζ).

Hence, if the variation in latent demand effects is driven by variation in attention,

ξ, Monotone Sensitivity will hold, and any set of environments that varies only

in participant attentiveness is a valid comparison set. Note that since we have

assumed the participant is inattentive to both latent demand and the demand

treatment, Bounding will hold if pT ≥ pL as before.

Variation driven by beliefs.

Consider changes to the environment that influence behavior only by altering

participants’ beliefs about the experimenter’s objective, i.e. we consider variation

in hL(ζ)pL(ζ). Call this term H. a(ζ) is unaffected, so:

d(aL(ζ)− a(ζ))

dH
= − φ(ζ)

v11(aL(ζ), ζ)
≥ 0

and therefore
d|aL(ζ)−a(ζ)|

dH = − φ(ζ)
v11(aL(ζ),ζ)

× sign(aL(ζ) − a(ζ)) = − φ(ζ)hL(ζ)
v11(aL(ζ),ζ)

which is positive when hL(ζ) = 1 (because an increase in H means the partic-

ipant’s beliefs are shifting toward certainty that the experimenter wants a high

action) and negative when hL(ζ) = −1 (because the participant is becoming more

uncertain about the experimenter’s wishes).

Next we turn to demand treatment effects. First we derive the response of the

participant’s posterior:

d H+hT pT

1+HhT pT

dH
=

(
1 +HhT pT

)
−
(
H + hT pT

)
hT pT

(1 +HhT pT )2

=
1−

(
hT pT

)2
(1 +HhT pT )2 =

1− pT2

(1 +HhT pT )2
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So:

dS(ζ)

dH
= −φ(ζ)(1− pT2)

[
1

(1 +HpT )2 v11(a+(ζ), ζ)
− 1

(1−HpT )2 v11(a−(ζ), ζ)

]

The sign of this expression depends on the sign of H and how v11 changes with

a. However, it is straightforward to see that Monotone Sensitivity will not hold

in general, and in fact sensitivity will tend to be higher when latent demand is

weaker. To see this, consider the simple case where v11 is constant. Then we

have:

dS(ζ)

dH
= −φ(ζ)(1− pT2)

v11

[(
1−HpT

)2 − (1 +HpT
)2

(1 +HpT )2 (1−HpT )2

]

= −φ(ζ)(1− pT2)

v11

[
−4HpT

(1 +HpT )2 (1−HpT )2

]

which is positive when hL = −1 and negative when hL = 1, i.e. it has the oppo-

site sign to
d|aL(ζ)−a(ζ)|

dH . The reason is that as H approaches zero, the participant

becomes more uncertain about the experimenter’s wishes and is therefore very

responsive to the new information in the demand treatments. Meanwhile as H

approaches 1 or −1, the participant is very confident about the value of h. Al-

though his confidence can be undermined by a demand treatment in the opposite

direction, he responds little to a demand treatment that confirms his beliefs, so

sensitivity is low.

B4. Defiers

In this section we discuss defiance. We first derive a special case that illustrates

how valid bounds can be obtained even when some participants defy the exper-

imenter. Then we present three examples where defier behavior causes our key

assumptions to break down.

Because our concern is with bounding rather than point identification, the

method is able to tolerate some defiance. To illustrate, suppose that v is homo-

geneous across individuals, quadratic in a, and normalized such that v1(a, ζ) =

b(ζ) − a where b is a constant. The natural action is equal to b for all indi-

viduals. Beliefs and φ are heterogeneous across individuals, indexed by i. For

compactness, label the beliefs HL
i := hLi p

L
i , H+

i := (HL
i + pT )/(1 + HL

i p
T ) and
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H−i := (HL
i − pT )/(1 − HL

i p
T ). Under our assumptions, the actions of interest

are given by:

aLi = b+ φiH
L
i a+

i = b+ φiH
+
i a−i = b+ φiH

−
i

Then, for Bounding to hold on average in the population, we require E[φiH
+
i ] ≥

0 ≥ E[φiH
−
i ], where expectations are over participants. If pT ≥ pLi for all individ-

uals, then H+
i ≥ 0 ≥ H−i , so the conditions are equivalent to weighted averages

of φ having the correct sign, where the weights are the beliefs. A special case of

interest is that where all individuals have identical H+
i and H−i (this is the case

if latent demand (HL
i ) is the same for all individuals, or if pT = 1). Then both

conditions reduce to E[φi] ≥ 0, i.e. Bounding holds if the average participant is

a complier.1

Now we provide three simple examples where defier behavior causes our key

assumptions to break down. First we show that it is possible for Bounding to hold

without Monotonicity, second that it is possible for Monotonicity to hold without

Bounding, and third that both can fail while retaining well-ordered bounds.

Let all decision makers share v(a) = −a2, so the natural action a = 0. 2/3 of the

population are compliers with φ = φC = 1 and 1/3 are defiers with φ = φD = −1.

Latent demand signals are assumed common within complier/defier groups but

different between compliers and defiers. They equal HL
C = hLCp

L
C and HL

D = hLDp
L
D

respectively, with corresponding beliefs following the demand treatments equal to:

H+
i =

HL
i + pT

1 +HL
i p

T
H−i =

HL
i − pT

1−HL
i p

T

We retain the assumption of common pT . Then the observed average actions

under latent demand, positive and negative demand treatments are:

E[aL] =
1

3
(2HL

C −HL
D) E[a+] =

1

3
(2H+

C −H
+
D) E[a−] =

1

3
(2H−C −H

−
D)

Our first example shows that Bounding can hold without Monotonicity. Thus

1For Monotonicity to hold on average we require E[φi(H
+
i − H

L
i )] ≥ 0 ≥ E[φi(H

L
i − H

−
i )]. Since

H+
i − HL

i > 0 and HL
i − H−i < 0, these conditions require that a weighted average of φ has the

correct sign, where the weights are the belief changes induced by the demand treatments. Violations of
Monotonicity or, in the extreme case, reversed bounds (a− > a+), are clear cause for concern. However
it is possible for Monotonicity to hold on average while Bounding fails and vice versa.
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a Monotonicity failure does not imply a failure of Bounding, but it is a warning

sign of the presence of defiers.

EXAMPLE 5 (Bounding without Monotonicity): Suppose HL
C = 0.5, HL

D = −0.5

and pT = 1. Then E[aL] = 0.5, E[a+] = 1/3 and E[a−] = −1/3. Therefore

E[a−] < a < E[a+] < E[aL].

Our second example shows that Bounding can fail while Monotonicity holds. This

is possible in the basic model if pT < pL, but can also be caused by defiance.

EXAMPLE 6 (Monotonicity without Bounding.): Suppose HL
C = 0.5, HL

D =

−0.5 and pT = 0.5. Then E[aL] = 0.5, E[a+] = 8
15 and E[a−] = 4

15 . Thus

a < E[a−] < E[aL] < E[a+].

Our third example shows that both Bounding and Monotonicity can fail, while

still producing well-ordered bounds (i.e. a+ > a−).

EXAMPLE 7 (No Bounding or Monotonicity.): Let HL
C = 0.75, HL

D = 0, and

pT = 0.75. Then E[aL] = 0.5, E[a+] = 39
100 and E[a−] = 1/4. Therefore a <

E[a−] < E[a+] < E[aL].

B5. Extension: learning about φ

A possible interpretation of our demand treatments is that they signal not only

the direction of the experimenter’s objective, but the salience or intensity of her

preference over objectives. For instance, “do me a favor” suggests that the choice

is important. In this section we extend the model to incorporate this feature,

allowing φ to depend upon a belief about the “importance” of the objective. We

assume that the decision-maker responds more strongly to experimenter demand

when they believe that complying with the objective it is more important, and

that this belief depends both on latent demand and the demand treatments.

Specifically, we now assume that the decision-maker’s preferences are:

U(a, ζ) = v(a, ζ) + aφ(ζ)E[gh|ζ]

where g ∈ {0, 1} captures whether conforming to h is important (1) or unim-

portant (0) to the experimenter. φ remains the decision-maker’s preference for

pleasing the experimenter, which is now scaled by g, i.e. the decision-maker

internalizes the perceived importance of the objective. We assume that g and
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h are believed independent (i.e. direction and importance are independent), so

E[gh|ζ] = E[g|ζ]E[h|ζ]. We also assume for simplicity is that the decision-maker’s

prior E[g] = 0.5.

Now, ζ contains two signals, hL(ζ), defined as before, and gL(ζ) ∈ {0, 1}, where

E[g|gL(ζ)] = E[g|gL(ζ), ζ] (i.e. gL is a sufficient statistic). gL is believed to equal

g with probability qL(ζ) < 1 and pure independent noise otherwise. We show

below that E[g|gL(ζ)] = 1
2 + qL

(
gL − 1

2

)
.

Similarly, a demand treatment is now two signals (hT , gT ), where hT is defined

as before and gT ∈ {0, 1, ∅}. gT = ∅ corresponds to the case where no treatment

is used, gT = 0 signals to the participant that their action is not important to

the experimenter, and gT = 1 signals that it is.

Conditional on sending a demand treatment, gT is believed to equal g with

probability qT and otherwise be pure noise independent of all other signals. We

show below that the Bayesian posterior is:

E[g|gT , gL(ζ)] =
1
2 + qL(ζ)

(
gL(ζ)− 1

2

)
+ qT

(
gT − 1

2

)
+ qT qL(ζ)

(
I[gT = gL(ζ)]− 1

2

)
1 + 2qT qL(ζ)

(
I[gT = gL(ζ)]− 1

2

)
We assume that gT can be varied independently of hT and will be held constant

within a typical pair of positive and negative demand treatments.

For Bounding to hold, we now need:

φ(ζ)E[g|gT , gL(ζ)]E[h|hT = 0, hL(ζ)] ≤ 0 ≤ φ(ζ)E[g|gT , gL(ζ)]E[h|hT = 1, hL(ζ)]

Since E[g|gT , gL(ζ)] ≥ 0 our Bounding condition does not depend on how the

demand treatments affect beliefs about g, all we require is φ(ζ) ≥ 0 and pT ≥
pL(ζ) as before.2

However, beliefs about g do affect the width of the bounds: sensitivity is increas-

2For Monotonicity to hold, we require

φ(ζ)E[g|gT , gL(ζ)]E[h|hT = 0, hL(ζ)] ≤ φ(ζ)E[g|gL(ζ)]E[h|hL(ζ)] ≤ φ(ζ)E[g|gT , gL(ζ)]E[h|hT = 1, hL(ζ)]

We can write

φ(ζ)
E[h|hT = 0, hL(ζ)]

E[h|hL(ζ)]
≤ φ(ζ)

E[g|gL(ζ)]

E[g|gT , gL(ζ)]
≤ φ(ζ)

E[h|hT = 1, hL(ζ)]

E[h|hL(ζ)]

We see that φ(ζ) ≥ 0 is necessary but not sufficient for Monotonicity, we also need that E[g|gT , gL(ζ)]
is neither “too big” nor “too small” relative to E[g|gL(ζ)]. Intuitively, if gT = 1 the demand treatments
shift all actions further away from the natural action, while if gT = 0. all actions are shifted toward the
natural action. gT = 1 and pT ≥ pL are sufficient for Monotonicity to hold.
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ing in E[g|gT , gL(ζ)]. The tightest bounds are obtained when E[g|gT , gL(ζ)] = 0,

which obtains when gT = 0 and qT = 1. More generally, the bounds are tightened

by signaling that acting according to the experimenter’s objective is not impor-

tant (gT = 0), or if gT = 1 by minimizing qT . We suspect that it may be difficult

in practice to both strongly signal the direction of the objective (large pT ), which

is required for Bounding, and that the objective is not important (gT = 0), so

reasonable demand treatments are likely to be those that strongly signal a di-

rectional objective while keeping salience low, i.e. large pT and small qT with

gT = 1.

Derivation of E[g|gL(ζ)] and E[g|gT , gL(ζ)]

Let the prior belief be 1
2 .

E[g|gL = y] = Pr(g = 1|gL = y) =
A

B

A = Pr(gL = y|g = 1)Pr(g = 1)

B = Pr(gL = y|g = 1)Pr(g = 1) + Pr(gL = y|g = 0)Pr(g = 0)

Since Pr(g = j|gL = y) = 1
2(1− qL) + qLI[y = j] and Pr(g = j) = 1

2 we have

A =
1

2

(
1

2
(1− qL) + qLI[y = 1]

)
=

1

2

(
1

2
+ qL

(
gL − 1

2

))
B =

1

2

[(
1

2
(1− qL) + qLI[y = 1]

)
+

(
1

2
(1− qL) + qLI[y = 0]

)]
=

1

2

Therefore, E[g|gL(ζ)] = 1
2 + qL

(
gL − 1

2

)
.

Turning to E[g|gT , gL(ζ)], we have assumed that when gT = ∅, E[g|gT , gL] =

E[g|gL]. After observing gT 6= ∅, the participant forms a posterior:
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E[g|gT , gL] = Pr(g = 1|gT , gL) =
A

B

A = Pr(gT = x|g = 1, gL = y)Pr(g = 1|gL = y)

B = Pr(gT = x|g = 1, gL = y)Pr(g = 1|gL = y)

+ Pr(gT = x|g = 0, gL = y)Pr(g = 0|gL = y)

Using the following

Pr(gT = x|g = j, gL = y) =
1

2
(1− qT ) + qT I[x = j]

Pr(g = j|gL = y) =
1

2
(1− qL) + qLI[y = j]

we have:

A =

(
1

2
(1− qT ) + qT I[x = 1]

)(
1

2
(1− qL) + qLI[y = 1]

)
=

(
1

2
(1− qT ) + qT gT

)(
1

2
(1− qL) + qLgL

)
=

1

2
qLgL +

1

2
qT gT − 1

2
qT qL

(
gL(1− gT ) + gT (1− gL)

)
+

1

4
(1− qT )(1− qL)

=
1

2
qLgL +

1

2
qT gT − 1

2
qT qL

(
I[gL 6= gT ]

)
+

1

4
− 1

4
qT − 1

4
qL +

1

4
qT qL

=
1

2
qL
(
gL − 1

2

)
+

1

2
qT
(
gT − 1

2

)
− 1

2
qT qL

(
1− I[gL = gT ]

)
+

1

4
+

1

4
qT qL

=
1

4
+

1

2
qL
(
gL − 1

2

)
+

1

2
qT
(
gT − 1

2

)
+

1

2
qT qL

(
I[gT = gL]− 1

2

)
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B =

(
1

2
(1− qT ) + qT I[x = 1]

)(
1

2
(1− qL) + qLI[y = 1]

)
+

(
1

2
(1− qT ) + qT I[x = 0]

)(
1

2
(1− qL) + qLI[y = 0]

)
=

(
1

2
(1− qT ) + qT gT

)(
1

2
(1− qL) + qLgL

)
+

(
1

2
(1− qT ) + qT (1− gT )

)(
1

2
(1− qL) + qL(1− gL)

)
=

1

2
(1− qT )qL +

1

2
(1− qL)qT +

1

2
(1− qT )(1− qL)

+ qT qLI[gT = gL]

=
1

2
+ qT qL

(
I[gT = gL]− 1

2

)

Therefore,

E[g|gT , gL] =
1
2 + qL

(
gL − 1

2

)
+ qT

(
gT − 1

2

)
+ qT qL

(
I[gT = gL]− 1

2

)
1 + 2qT qL

(
I[gT = gL]− 1

2

)
B6. Richer beliefs and correlated signals

Researchers sometimes give experimental participants instructions like “there

are no right or wrong answers” or “we are only interested in what you think is

the best choice.” This can be thought of as a demand treatment that demands

participants choose the natural action, a(ζ).

It is straightforward to analyze such treatments in our framework. In this

section, we extend the model to allow h to take three values: {−1, 0, 1}, where

h = 0 captures the case where the experimenter wants the participant to choose

the natural action. We call the action following hT = 0, a0(ζ).

For simplicity we assume that the participant’s prior belief is that each possi-

bility is equally likely (i.e. is true with probability 1/3), so E[h] = 0. ε and η

are also believed to take each value with probability 1/3 and are independent.

hL ∈ {−1, 0, 1} and hT ∈ {−1, 0, 1, ∅} and pL and pT are defined as before. We

maintain the assumption that the participant infers nothing when the experi-

menter does not send a demand treatment (hT = ∅).
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We show below that the beliefs can be written as:

E[h|hL] = pLhL(B1)

E[h|hT = ∅, hL] = pLhL(B2)

E[h|hT , hL] =
1
3(1− pT )pLhL + 1

3(1− pL)pThT + pT pLhT I[hT = hL]
1
3 (1− pT pL) + pT pLI[hT = hL]

(B3)

Bounding holds if E[h|hT = 1, hL] ≥ 0 and E[h|hT = −1, hL] ≤ 0. It is

straightforward to check that the condition is the same as before: pT ≥ pL.

What purpose, then, do hT = 0 treatments serve? It is natural to think that

demanding participants to take the natural action will eliminate demand effects,

but under our assumptions, hT = 0 does not in general elicit the natural action.

Instead latent demand still influences the participant’s action. We have:

E[h|hT = 0, hL] =
1
3(1− pT )pLhL

1
3 (1− pT pL) + pT pLI[hL = 0]

This expression equals zero if pT = 1 (the demand treatment is perfectly in-

formative), or pLhL = 0 (no latent demand), otherwise it has the same sign as

pLhL. One interpretation is that while the participant takes at face value the

experimenter’s demand to choose the natural action, he might be unaware of the

influence of other design features that nudge him in one direction or another.

Despite this negative result, hT = 0 treatments can still be useful. First,

they are informative about the sign of the bias due to latent demand. This

is because E[h|hT = 0, hL] ∈ [min{E[h|hL], 0},max{E[h|hL], 0}] and therefore

a0(ζ) ∈ [min{aL(ζ), a(ζ)},max{aL(ζ), a(ζ)}].3 The action taken when hT = 0

lies between the natural action and the action induced by latent demand, because

the demand treatment shifts the participant’s posterior toward zero.

Second, they can be used to obtain tighter bounds on a(ζ) if we know the

direction of the latent demand effect. Suppose for example we know that aL(ζ) ≥
a(ζ) (either from prior information or because we ran a treatment with hT = 0

and verified that a0(ζ) ≤ aL(ζ)). Then, the interval [a−(ζ), a0(ζ)] gives a valid

and tighter bound on a(ζ) than [a−(ζ), a+(ζ)]. Formally a(ζ) ∈ [a−(ζ), a0(ζ)] ⊆
[a−(ζ), a+(ζ)].4

3To see this, note that
∣∣E[h|hL]− E[h|hT = 0, hL]

∣∣ ≥ 0 and both have the same sign.
4We thank Liad Weiss for pointing this out to us.
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Finally, there is one important case in which hT = 0 perfectly recovers the

natural action, i.e. a0(ζ) = a(ζ). Suppose that instead of assuming that the

signals hT and hL contain independent shocks, the participant perceives that hL

is a noisy signal of hT . Formally, he believes that with probability pL < 1, hL = hT

and with probability (1− pL), hL = ε. Then, when hT and hL disagree, he knows

that hL is pure noise, when they agree hL contains no more information than hT .

Hence, the participant disregards hL after observing hT and E[h|hT , hL] = pThT .

Then, sending hT = 0 recovers the natural action: E[h|hT = 0, hL] = 0, ∀hL.

An advantage of our bounds is that they are valid whether or not hT or hL are

perceived as independent, in other words they are conservative relative to the

approach of simply measuring a0(ζ).

To summarize, unless the demand treatment is perceived as fully informative

(pT = 1), signaling hT = 0 does not induce the participant to take the natural

action, i.e. a0(ζ) 6= a(ζ). The intuition is that such a treatment does not eliminate

all of the influence of latent demand – the decision-maker views both signals as

informative and weighs them against one another, so the posterior belief lies

between 0 and E[h|hL]. However, because signaling hT = 0 moves actions toward

the natural action it can be informative about the direction of latent demand.

In contrast, in an alternative formulation with non-independent signals, where

participants perceive the demand treatments to contain the same information as

latent demand but less noise, signaling hT = 0 does elicit the natural action.

Thus, demanding the natural action does not necessarily obtain bounds that

contain the natural action, while a pair of sufficiently informative positive and

negative demand treatments does.

Derivation of beliefs with ternary signals

Recall that now h ∈ {−1, 0, 1}, hL ∈ {−1, 0, 1} and hT ∈ {−1, 0, 1, ∅}.

To avoid clutter we suppress dependence on ζ. After observing hL, the partici-

pant forms a posterior E[h|hL] = Pr(h = 1|hL)× 1 +Pr(h = −1|hL)× (−1). We

can write this as:
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E[h|hL = y] = Pr(h = 1|hL = y)− Pr(h = −1|hL = y) =
A

B

A = Pr(hL = y|h = 1)Pr(h = 1)− Pr(hL = y|h = −1)Pr(h = −1)

B = Pr(hL = y|h = 1)Pr(h = 1) + Pr(hL = y|h = 0)Pr(h = 0)

+ Pr(hL = y|h = −1)Pr(h = −1)

Since Pr(h = j|hL = y) = 1
3(1− pL) + pLI[y = j] and Pr(h = j) = 1

3 we have

A =
1

3

[(
1

3
(1− pL) + pLI[y = 1]

)
−
(

1

3
(1− pL) + pLI[y = −1]

)]
=

1

3
pL [I[y = 1]− I[y = −1]] =

1

3
pLhL

B =
1

3

[(
1

3
(1− pL) + pLI[y = 1]

)
+

(
1

3
(1− pL) + pLI[y = 0]

)
+

(
1

3
(1− pL) + pLI[y = −1]

)]
=

1

3

So

(B4) E[h|hL = y] = pLhL

just as before. Turning to beliefs following the demand treatments, as before we

assume that when hT = ∅, E[h|hT , hL] = E[h|hL]. We have:

E[h|hT , hL] = Pr(h = 1|hT , hL)− Pr(h = −1|hT , hL) =
A

B

A = Pr(hT = x|h = 1, hL = y)Pr(h = 1|hL = y)

− Pr(hT = x|h = −1, hL = y)Pr(h = −1|hL = y)

B = Pr(hT = x|h = 1, hL = y)Pr(h = 1|hL = y)

+ Pr(hT = x|h = 0, hL = y)Pr(h = 0|hL = y)

+ Pr(hT = x|h = −1, hL = y)Pr(h = −1|hL = y, hL = y)
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Using

Pr(hT = x|h = j, hL = y) =
1

3
(1− pT ) + pT I[x = j]

Pr(h = j|hL = y) =
1

3
(1− pL) + pLI[y = j]

we obtain:

A =

(
1

3
(1− pT ) + pT I[x = 1]

)(
1

3
(1− pL) + pLI[y = 1]

)
−
(

1

3
(1− pT ) + pT I[x = −1]

)(
1

3
(1− pL) + pLI[y = −1]

)
=

1

3
(1− pT )pLI[y = 1] +

1

3
(1− pL)pT I[x = 1] + pT pLI[x = 1]I[y = 1]

− 1

3
(1− pT )pLI[y = −1]− 1

3
(1− pL)pT I[x = −1]− pT pLI[x = −1]I[y = −1]

=
1

3
(1− pT )pLhL +

1

3
(1− pL)pThT + pT pLhT I[hT = hL]

B =

(
1

3
(1− pT ) + pT I[x = 1]

)(
1

3
(1− pL) + pLI[y = 1]

)
+

(
1

3
(1− pT ) + pT I[x = 0]

)(
1

3
(1− pL) + pLI[y = 0]

)
+

(
1

3
(1− pT ) + pT I[x = −1]

)(
1

3
(1− pL) + pLI[y = −1]

)
=

1

3
(1− pT )(1− pL) +

1

3
pT (1− pL) (I[x = 1] + I[x = 0] + I[x = −1])

+
1

3
pL(1− pT ) (I[y = 1] + I[y = 0] + I[y = −1])

+ pT pL (I[x = 1]I[y = 1] + I[x = 0]I[y = 0] + I[x = −1]I[y = −1])

=
1

3

(
1− pT pL

)
+ pT pLI[hT = hL]

So

(B5) E[h|hT , hL] =
1
3(1− pT )pLhL + 1

3(1− pL)pThT + pT pLhT I[hT = hL]
1
3 (1− pT pL) + pT pLI[hT = hL]
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B7. Computing confidence intervals

Here we describe how we compute demand-robust confidence intervals. We note

that this was not included in the pre-analysis plans.

Confidence intervals for actions

Imbens and Manski (2004) show that asymptotically the probability that the

estimate for the upper (lower) bound is lower (higher) than the true value can be

ignored when making inference. Thus, one can construct one-sided intervals with

confidence level α around both the upper and the lower bound. The 95 percent

confidence interval for the true demand-free behavior is thus given by:

CI() = [a−(ζ)− CN
σ̂−√
N
, a+(ζ) + CN

σ̂+

√
N

]

Here, σ̂− =

√
̂V ar(a−(ζ)) and σ̂+ =

√
̂V ar(a+(ζ)), and CN satisfies

Φ

(
CN +

√
N
a+(ζ)− a−(ζ)

max(σ̂−, σ̂+)

)
− Φ(−CN ) = 0.90.

The 95 percent confidence interval for the set [a−(ζ), a+(ζ)] is given by:

CI() = [a−(ζ)− CN
σ̂−√
N
, a+(ζ) + CN

σ̂+

√
N

],

where CN satisfies

Φ

(
CN +

√
N
a+(ζ)− a−(ζ)

max(σ̂−, σ̂+)

)
− Φ(−CN ) = 0.95.

Confidence intervals for treatment effects

We also outline how one can compute confidence intervals for the treatment

effects [a(ζ1) − a(ζ0)] and for the set defined by the upper and lower bounds for

treatment effects as given by our demand treatments: [a(ζ1)− a(ζ0)] ∈ [a−(ζ1)−
a+(ζ0), a+(ζ1)− a−(ζ0)]
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For simplicity we denote the lower bound, [a−(ζ1) − a+(ζ0)], as T− and the

upper bound, [a+(ζ1)−a−(ζ0)], as T+. The 95 percent confidence interval for the

true demand-free treatment effect is given by:

CI() = [T− − CN
σ̂T−√
N
, T+ + CN

σ̂T+

√
N

].

Here, σ̂T− =

√
̂V ar(T−) and σ̂T+ =

√
̂V ar(T+), and CN satisfies

Φ

(
CN +

√
N

T+ − T−

max(σ̂T−, σ̂T+)

)
− Φ(−CN ) = 0.90.

The 95 percent confidence interval for the set [a−(ζ1)−a+(ζ0), a+(ζ1)−a−(ζ0)]

is as follows:

CI() = [T− − CN
σ̂T−√
N
, T+ + CN

σ̂T+

√
N

],

where

Φ

(
CN +

√
N
T+(τ)− T−(τ)

max(σ̂T−, σ̂T+

)
− Φ(−CN ) = 0.95.

B8. Controlling for demand

Here we provide derivations for the results in section III.D. We begin with the

usual first-order condition, assuming a demand treatment hT :

0 = v1(a∗(ζ, hT ), ζ) + φ(ζ)E[h|hT , hL(ζ)]

taking the first-order Taylor approximation at the natural action a(ζ) we obtain:

0 ≈ v1(a(ζ), ζ)︸ ︷︷ ︸
=0

+φ(ζ)E[h|hT , hL(ζ)] + [a∗(ζ, hT )− a(ζ)]v11(a(ζ), ζ)
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where the first term is zero by definition of a(ζ). Rearranging we obtain equation

(8):

a∗(ζ, hT ) ≈ a(ζ)− φ(ζ)

v11(a(ζ), ζ)
E[h|hT , hL(ζ)].

= a(ζ) + Φ(ζ)E[h|hT , hL(ζ)].

Assume two treatment groups: ζ ∈ {0, 1}, and denote their corresponding

demand treatments by hTζ . If no demand treatments are applied (hT1 = hT0 = ∅).
Since we are interested in cases where hT0 = hT1 we suppress the subscripts. The

approximate bias of the treatment effect estimate can be written as:

Bias = a∗(1, ∅)− a∗(0, ∅)− [a(1)− a(0)]

≈ a(1) + Φ(1)E[h|hT , hL(1)]− a(0)− Φ(0)E[h|hT , hL(0)]− [a(1)− a(0)]

Adding and subtracting terms yields:

Bias ≈ Φ(1)
(
E[h|hT , hL(1)]− E[h|hT , hL(0)]

)︸ ︷︷ ︸
Bias due to beliefs

+ (Φ(1)− Φ(0))E[h|hT , hL(0)]︸ ︷︷ ︸
Bias due to “responsiveness”

Fully informative demand treatments

We now show that when demand treatments are fully informative, one can test

for bias due to behavioral responsiveness.

[a∗(1, 1)− a∗(1, 0)]︸ ︷︷ ︸
Sensitivity (ζ = 1)

− [a∗(0, 1)− a∗(0, 0)]︸ ︷︷ ︸
Sensitivity (ζ = 0)

= [a∗(1, 1)− a∗(0, 1)]︸ ︷︷ ︸
Treatment effect (hT = 1)

− [a∗(1, 0)− a∗(0, 0)]︸ ︷︷ ︸
Treatment effect (hT = −1)

≈
[
a(1) + Φ(1)E[h|1, hL(1)]− a(0)− Φ(0)E[h|1, hL(0)]

]
−
[
a(1) + Φ(1)E[h| − 1, hL(1)]− a(0)− Φ(0)E[h| − 1, hL(0)]

]
= [Φ(1)× 1− Φ(0)× 1]− [Φ(1)×−1− Φ(0)×−1]

= 2 (Φ(1)− Φ(0))

Next, we show that averaging the “positive-positive” and “negative-negative”
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treatment effects approximates the true treatment effect

1

2
([a∗(1, 1)− a∗(0, 1)] + [a∗(1,−1)− a∗(0,−1)])

≈a(1)− a(0) +
1

2
[(Φ(1)− Φ(0))× 1 + (Φ(1)− Φ(0))×−1]

=a(1)− a(0)

Less informative treatments

For compactness we define notation HL(ζ) ≡ hL(ζ)pL(ζ) and HT ≡ hT pT . Our

Bounding assumption implies
∣∣HT

∣∣ ≥ ∣∣HL(ζ)
∣∣.

Consider the expressions for belief differences between treatment and control,

first without (DiffL) and then with (DiffT ) demand treatments. We have

DiffL ≡ HL(1)−HL(0)

and:

DiffT ≡ HL(1) +HT

1 +HL(1)HT
− HL(0) +HT

1 +HL(0)HT

=
(1−HT2)

(1 +HL(1)HT )(1 +HL(0)HT )
×DiffL

We want to find conditions under which
∣∣DiffT

∣∣ < ∣∣DiffL
∣∣, which holds if and only

if
(1−HT2)

(1 +HL(1)HT )(1 +HL(0)HT )
< 1

rearranging we obtain:

0 < HT (HL(1) +HL(0)) +HT2(1 +HL(1)HL(0))(B6)

If hT = 1, (B6) reduces to

− HL(1) +HL(0)

1 +HL(1)HL(0)
< HT
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while if hT = −1 it reduces to

− HL(1) +HL(0)

1 +HL(1)HL(0)
> HT .

Since the left hand side lies in the interval (−1, 1) there always exists a sufficiently

strong demand treatment (pT sufficiently large) that (B6) is satisfied. We now

evaluate whether there is more we can say. There are X cases to consider. Assume

throughout, without loss of generality, that
∣∣HL(1)

∣∣ > ∣∣HL(0)
∣∣.

1) Suppose the latent demand beliefs have the same sign as each other (hL(1) =

hL(0) = hL) and the same sign as the demand treatment (hL = hT ). Then

it is easy to verify that (B6) holds for all HT . Intuitively, when the la-

tent demand beliefs have the same sign, additional information that further

reinforces those beliefs has a greater effect on the one that is less certain,

reducing the gap between them.

2) The latent demand beliefs have the same sign as each other (hL(1) =

hL(0) = hL) and the opposite sign to the demand treatment (hL = −hT ).

Assume hT = 1 and hL = −1 (the opposite case is symmetric). We know

that (B6) holds for sufficiently strong HT , we will ask if our Bounding as-

sumption is sufficient. We show that it is not, by contradiction. Suppose

Bounding holds exactly, i.e. HT = −HL(1). Then, by the premise that

(B6) is satisfied:

− HL(1) +HL(0)

1 +HL(1)HL(0)
< −HL(1)

1 + HL(0)
HL(1)

1 +HL(1)HL(0)
< 1

which holds if and only if:

HL(0)

HL(1)
< HL(1)HL(0)

1 < HL(1)2

a contradiction since HL(1) < 1. Thus in this case the condition for demand

treatments to reduce bias is stronger than Bounding.
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3) The latent demand beliefs have opposite signs (hL(1) = −hL(0)), and the

stronger belief (HL(1)) has the same sign as hT , i.e. hT = hL(1). Focus

again on the case where hT = 1 (the opposite case is symmetric). We

require:

− HL(1) +HL(0)

1 +HL(1)HL(0)
< HT

It is easy to see that the condition is always satisfied since the left-hand

side is negative.

4) The latent demand beliefs have opposite signs (hL(1) = −hL(0)), and the

stronger belief has the opposite sign to hT , i.e. hT = −hL(1). Focus again

on the case where hT = 1 (the opposite case is symmetric). We know that

(B6) holds for sufficiently strongHT , we will ask if our Bounding assumption

is sufficient. Thus let HT = −HL(1) (bounding holds exactly). We require:

− HL(1) +HL(0)

1 +HL(1)HL(0)
< −HL(1)

1 + HL(0)
HL(1)

1 +HL(1)HL(0)
< 1

HL(0)

HL(1)
< HL(1)HL(0)

1 > HL(1)2

which is satisfied. Thus Bounding is sufficient for (B6) to hold.

B9. Structural estimation

This section outlines step by step how the parameters are constructed in our

NLLS estimation of the structural model in section III.E.

Data and parameter adjustments

First, we follow DP exactly in rounding effort scores to the nearest 100 (except

for those in range [1, 49] which we round to 25). This is because incentives were

paid per 100 points, and we wish to avoid modeling effort choices that lie between

two 100 point thresholds. We refer the reader to DP for further details.

Second, we make a couple of adjustments pre and post-estimation. First, we

divide the rounded scores by 100. In other words, if effort a is measured in points,
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we compute a′ = a/100 which is measured in hundreds of points. Second, we mul-

tiply the incentive, ζ, which is measured in cents per point, by 100 to express it as

ζ ′ = 100ζ which is measured in cents per 100 points. These transformations were

helpful in achieving convergence of the estimator, which otherwise occasionally

suffered from underflow problems. However they change the interpretation of the

parameters. Specifically, the intrinsic motivation parameter s and the preference

for pleasing the experimenter, φ, will both be measured in units equivalent to

cents per 100 points, while the cost function parameters will be expressed for

effort measured in hundreds of points.

To aid comparability with DP we therefore re-transform the parameters after

estimation. DP present their estimates of incentive parameters (which in our case

are s and φ) in the same units, cents per 100 points, so we do not need to correct

them. k and γ are reported for effort measured in points, so we transform our

estimates for comparability. We derive the adjustments as follows. First, for the

power cost function, we have:

U = (s+ ζ + φE[h|hT , hL])a− ka1+γ

1 + γ

Let a′ = a
100 and ζ ′ = 100ζ. Then:

U =

(
s+

ζ ′

100
+ φE[h|hT , hL]

)
100a′ − k(100a′)1+γ

1 + γ

=
(
100s+ ζ ′ + 100φE[h|hT , hL]

)
a′ − k(100a′)1+γ

1 + γ

giving rise to first-order condition:

0 =
(
100s+ ζ ′ + 100φE[h|hT , hL]

)
− ka′γ1001+γ

a′ =

(
100s+ ζ ′ + 100φE[h|hT , hL]

k1001+γ

) 1
γ

log(a′) =
1

γ
log

(
s∗ + ζ ′ + φ∗E[h|hT , hL]

k∗

)
where s∗ = 100s, φ∗ = 100φ and k∗ = 1001+γk. We leave s∗ and φ∗, (which are

in equivalent units to cents per 100 points) untransformed for comparability with

DP. In the tables we report k = k∗/1001+γ and its standard error, computed via

38



the delta method.

For the exponential cost function we have:

U = (s+ ζ + φE[h|hT , hL])a− k

γ
exp(γa)

= (s∗ + ζ ′ + φ∗E[h|hT , hL])a′ − k

γ
exp(100γa′)

implying first-order condition:

0 = s∗ + ζ ′ + φ∗E[h|hT , hL]− 100k exp(100γa′)

a′ =
1

100γ
log

(
s∗ + ζ ′ + φ∗E[h|hT , hL]

100k

)
=

1

γ∗
log

(
s∗ + ζ ′ + φ∗E[h|hT , hL]

k∗

)
where s∗ = 100s, and φ∗ = 100φ as before, while γ∗ = 100γ, k∗ = 100k. In the

tables we report γ = γ∗/100 and k = k∗/100.

Error term

To allow for the observed heterogeneity in effort, we follow DP in assuming

heterogeneous effort costs, as follows. Let the cost of effort under power utility

equal ka1+γ(1 + γ)−1 exp(−γε) where ε ∼ N(0, σ2
ε ). Then our FOC becomes

0 =
(
100s+ ζ ′ + 100φE[h|hT , hL]

)
− ka′γ1001+γ exp(−γε)

a′ =

(
100s+ ζ ′ + 100φE[h|hT , hL]

k1001+γ

) 1
γ

exp(ε)

log(a′) =
1

γ
log

(
100s+ ζ ′ + 100φE[h|hT , hL]

k1001+γ

)
+ ε

where ε becomes the error term in our NLLS routine. For the exponential cost,

we follow DP and assume effort cost is kγ−1 exp(γa) exp(−γε). Then our FOC
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becomes

0 = s∗ + ζ ′ + φ∗E[h|hT , hL]− 100k exp(100γa′) exp(−γε)

a′ =
1

100γ
log

(
s∗ + ζ ′ + φ∗E[h|hT , hL]

100k

)
+

ε

100

=
1

γ∗
log

(
s∗ + ζ ′ + φ∗E[h|hT , hL]

k∗

)
+ ε∗

where ε∗ = ε/100 forms the error term in our estimation.

Estimating equation

Finally, in our estimation we sometimes need to estimate the product φ∗E[h|hL].

We estimate this product directly, then transform by dividing by φ∗. Specifically,

we estimate the following:

yi =
1

β0
log
[
ζ ′i + β1 + β2(pos demandi − neg demandi)

+ β3 × no demandi × incentive 0ci + β4 × no demandi × incentive 1ci

+ β5 × no demandi × incentive 4ci]−
1

β0
log(β6) + εi

where y = log(a′) or a′ respectively, pos demand, neg demand and no demand are

dummies for our positive, negative and no demand treatments, while incentive Xc

is a dummy for the treatment with X cents per 100 points. Parameters are as

follows: β0 = γ or γ∗ respectively, β1 = s∗, β2 = φ∗, β3 = φ∗E[h|hL(ζ = 0)],

β4 = φ∗E[h|hL(ζ = 1)], β5 = φ∗E[h|hL(ζ = 4)] and β6 = k∗. We then compute

the three values for E[h|hL] by dividing by β2, i.e. β3/β2, β4/β2 and β5/β2.

γ and k are computed by the transformations outlined above. Standard errors

are computed by the delta method. In the specification where we restrict latent

demand to be equal for the 1 cent and 4 cent treatments we impose β4 = β5.

Extrapolation

Our large estimates of hL(4)pL(4) reflect an out-of-sample extrapolation as the

main model parameters are estimated from the 0 and 1 cent treatment groups.

Figure B1 illustrates this for the power cost case. Points correspond to mean (log)

effort for each treatment group. The figure then plots (a) predicted effort using
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the DP specification, which fits the “no demand” data only (parameters taken

from Column 1 of table 4), and (b) predicted effort using the exactly identified

model (Column 3 of table 4), for each case of zero demand E[h] = 0, strong

positive demand (E[h] = 1) and strong negative demand (E[h] = −1). The

estimation then recovers the latent demand beliefs by comparing observed effort

to predicted effort when demand is zero.

It is clear from the figure that the extrapolation from model (b) to the 4 cent

effort treatment is not perfect, and the observed behavior lies outside the limits

implied by E[h] ∈ [−1, 1]. This is the reason for the large negative fitted value

for beliefs at this point.

Another thing that is clear from the figure is how the curvature of the effort cost

function determines the imputed latent beliefs, which may explain the difference

in imputed beliefs between the power and exponential cost functions. The sign of

imputed beliefs depends on whether the “no demand” point lies above or below

the curve, so changes in curvature can flip the sign of these estimates.

Figure B1. Structural estimation: fitted values
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Note: Figure displays mean (log) effort for each treatment used in the structural estimation, and fitted
values from the estimated models.
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B10. Using the method in practice

In this section we work through an example to illustrate the methods we have

developed. We do this with the help of Figure B2, which represents the 10 data

points available to a researcher who has applied no demand, weak and strong

treatments to a control group (ζ0) and a treatment group (ζ1). To avoid con-

fusion, we will label the actions under weak positive and negative demand as

a+(ζ) and a−(ζ), while strong (assumed to be fully informative) positive and

negative demand actions are defined as a++(ζ) and a−−(ζ). In our example the

conventional treatment effect is given by aL(ζ1)− aL(ζ0) (or point H minus point

C).

1) We can use our strong treatments to construct bounds for actions: In Figure

B2 the bounds on action one are defined by points A and E for the control

group, [a−−(ζ0), a++(ζ0)], and by points F and J for the treatment group,

[a−−(ζ1), a++(ζ1)].

2) Similarly, we can construct bounds using the weak treatments, which are de-

fined by points B and D for the control group, [a−(ζ0), a+(ζ0)], and by points

G and I for the treatment group, [a−(ζ1), a+(ζ1)]. Under the assumption

that our demand treatments are more informative than underlying latent

demand, these bounds contain the natural action.

3) We can analogously also define strong bounds for treatment effects. The

upper bound is given by the comparison between respondents in the treat-

ment group that receive strong positive demand treatments, and respon-

dents in the control group that receive strong negative demand treatments.

In Figure B2 this corresponds to the difference between points J and A:

a++(ζ1)−a−−(ζ0). The lower bound is given by the comparison between re-

spondents in the treatment group that receive strong negative demand treat-

ments, and respondents in the control group that receive strong positive de-

mand treatments, given by the difference points F and E: [a−−(ζ1)−a++(ζ0).

The bounds are formally defined as follows: [a−−(ζ1)− a++(ζ0), a++(ζ1)−
a−−(ζ0)].

4) Similarly, we can construct weak bounds for treatment effects, by applying

weak instead of strong treatments. The bounds are given by: [a−(ζ1) −
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a+(ζ0), a+(ζ1)−a−(ζ0)]. In Figure B2 the upper and lower bounds are given

by the difference between points I and B, and points G and D, respectively.

5) An alternative to creating bounds, is to “control for demand effects”. Under

the assumption that demand treatments are fully informative, provided re-

sponsiveness to demand treatments does not differ across treatment groups,

we can point identify treatment effects that are not biased by demand ef-

fects. In this specific case, we could apply strong positive or strong negative

demand treatments to both the treatment and the control group: In Fig-

ure B2 the estimates are given by the difference between points J and E:

(a++(ζ1)− a++(ζ0)), or F and A: (a−−(ζ1)− a−−(ζ0)).

6) If responsiveness to fully informative demand treatments differs significantly

across treatment arms, our point estimates from employing same-signed de-

mand treatments are still biased. However, by the symmetry of the Taylor

approximation, we can approximate the treatment effect using the mid-

points of the bounds generated the strong demand treatments. In B2 this

corresponds to comparing the average of A and E to the average of J and

F: 0.5 ∗ [(a++(ζ1) + a−−(ζ1))− (a++(ζ0) + a−−(ζ0))].

7) Our approach of “controlling for demand effects” can also be extended to

weak treatments. In Section 3.4 we outline the conditions under which this

approach reduces bias. First, we compare respondents in the treatment

and control group who all receive weak positive or weak negative demand

treatments. In Figure B2 the positive-positive point estimate is defined by

points I and D: (a+(ζ1) − a+(ζ0)), while the negative-negative estimate is

comes from points F and B: (a−(ζ1)− a−(ζ0)).

8) Finally, fully informative demand treatments can be used to eliminate nui-

sance parameters due to unobservable beliefs, facilitating the estimation of

structural models. Structural estimation leverages points A, E, F, and J

to estimate model parameters, and uses those to impute the latent demand

beliefs at points C and H.
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Figure B2. Using the method in practice: Example

A: a--(ζ0)
B: a-(ζ0)
C: aL(ζ0)

D: a+(ζ0)

E: a++(ζ0)

F: a--(ζ1)
G: a-(ζ1)
H: aL(ζ1)
I: a+(ζ1)

J: a++(ζ1)
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Note: Figure displays mean actions under different treatment conditions and different demand treat-
ments. Point A is given by respondents in the control group who receive the negative strong demand
treatment: a−−(ζ0); Point B is given by respondents in the control group who receive the negative weak
demand treatment: a−(ζ0); Point C is defined by respondents in the control group who receive no de-
mand treatment: aL(ζ0); Point D is given by respondents in the control group who receive the positive
weak demand treatment: a+(ζ0); Point E is given by respondents in the control group who receive the
positive strong demand treatment: a++(ζ0). Points F to J are defined analogously for respondents in
the treatment group (ζ1).
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C. Pre-specified Tables and Figures

This section works through the pre-specified analysis for each experiment, pre-

senting summaries of the raw data and conducting hypothesis tests.

1) Pre-analysis plan 1 described experiment 1, which was conducted on MTurk

with strong demand treatments and both real and hypothetical stakes, on

the dictator game, investment game and convex time budget.

2) Pre-analysis plan 2 described experiment 2, which was conducted on MTurk

with weak demand treatments and both real and hypothetical stakes, on the

dictator game and investment game.

3) Pre-analysis plan 3 described experiment 3, which was conducted on MTurk

with strong demand treatments, real stakes and the real-effort task.

4) Pre-analysis plan 4 described experiment 4, which was conducted on the

representative panel with both strong and weak demand treatments, real

stakes, and the dictator game and investment game.

5) Pre-analysis plan 5 described experiments 5 and 6, which were conducted on

MTurk with strong and weak demand treatments and collected data for the

remaining games (experiment 6 collected real-effort data and experiment 5

collected the other games).

6) Pre-analysis plan 6 described experiment 7, which were conducted on MTurk

with strong demand treatments, varied within-participant, on the dictator

game and investment game.

The majority of the hypothesis tests for each pre-analysis plan are presented

in a single table format (e.g. Table C3). The top half of these tables report

regression coefficients and standard errors, and the bottom half reports p-values

(and adjusted p-values) on the pre-specified hypothesis tests.

When conducting multiple tests within a family of hypotheses we also report

false-discovery rate corrected p-values. These are used when a) testing for a

positive effect (on actions or beliefs) of the positive demand treatment, negative

effect of the negative demand treatment and overall effect; and b) when testing

for heterogeneity across games within an experiment.

We deviate from the pre-analysis plans in two minor ways, which are inconse-

quential for the results.
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1) As described in section II.A of the paper, we only pre-specified sample

exclusions in the main real-effort experiment 3 (to match those used by

DellaVigna and Pope). For consistency, we decided to apply the same re-

strictions to all other games. The only binding restriction was the dropping

of participants who submitted multiple responses in a given experiment,

amounting to less than 0.5 percent of our sample.

2) In experiments for which we collected data without demand treatments (“no

demand” conditions), we pre-specified to standardize actions by the mean

and standard deviation of this group. However, experiments 5 and 6 only

collected positive and negative demand conditions. For consistency, there-

fore, we instead always standardize by the mean and standard deviation

of the negative demand treatment group. This amounts to a simple linear

transformation of the data.

In addition, some of the analysis in the paper was not described in the pre-analysis

plans: the bounding of treatment effects, the computation of confidence intervals

on the bounds, and the structural analysis.

C1. Pre-analysis Plan 1

• Table C1 and Figure C1 summarize the means, standard errors, and cor-

responding 95 percent confidence intervals from experiment 1 across all 18

treatment arms. Table C2 displays the game-level regressions based on the

raw data showing the control mean from the “no demand condition” as

well as the coefficients on the positive demand treatment indicator and the

negative demand treatment indicator.

• Balance tests for this experiment are in Table D1 in Section D and indicate

that there are no imbalances.

• Table C3 displays the main effects of the positive and negative demand

treatment as well as heterogeneous treatment effects by gender, attention

and whether choices are hypothetical or incentivized. This table also sum-

marizes the results for the tests we had pre-specified in the pre-analysis

plan.

– Column 1 of Table C3 shows that people increase their actions in re-

sponse to the positive demand treatments (p<0.001), decrease their

46



actions in response to the negative demand treatments (p<0.001) and

that the overall response to demand is non-zero (p<0.001). False-

discovery rate corrected p-values reach the same conclusion.

– Next, in column 2 of Table C3 we show that there is no significant

treatment heterogeneity depending on whether choices are hypotheti-

cal or incentivized (p=0.24).

– In column 3, we test whether there are any systematic gender dif-

ferences in response to demand. Pooling across all tasks, measured

sensitivity was higher for women than for men (p=0.099).

– In column (4) we test whether attention moderates the response to

demand treatments. We find stronger responses to the demand treat-

ments for more attentive respondents (p=0.102).

– In column (5) we examine heterogeneity across games. We find that

overall sensitivity in the dictator game is significantly higher than sen-

sitivity in the time preference measure and the risk game (p<0.01).

We find no significant difference in sensitivity in the time preference

measure and the risk game (p=0.552). False-discovery rate corrected

p-values reach the same conclusion. An omnibus test of differences

across all games highlights that responses significantly differ between

games (p<0.001).

• Table C4 explores how people’s beliefs about whether the experimenter

wanted (column 1) or expected (column 2) a high action. Table C4 shows

the results for the tests we pre-specified.

– People in the positive demand condition are more likely to think that

the experimenter wanted a high action (p<0.001) and that the exper-

imenter expected a high action (p<0.001).

– People in the negative demand condition are less likely to think that

the experimenter wanted a high action (p<0.001) and that the exper-

imenter expected a high action (p<0.001).

– Overall, people in the positive demand condition are significantly more

likely to think that the experimenter wanted a high action or expected

a high action compared to people in the negative demand condition

(p<0.001).
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– False-discovery rate corrected p-values reach the same conclusions.

Figure C1. Overview of raw data: Experiment 1
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Note: This figure summarizes the mean actions and corresponding 95 confidence intervals from experi-
ment 1 across all 18 treatment arms

Table C1—Overview of raw data: experiment 1

Time Risk Aversion Dictator Game

Incentivized Hypothetical Incentivized Hypothetical Incentivized Hypothetical

Unconditional Means

Positive demand: Mean 0.795 0.813 0.550 0.573 0.434 0.402
Positive demand: SD 0.379 0.357 0.300 0.316 0.253 0.258

No demand: Mean 0.786 0.773 0.466 0.525 0.282 0.313
No demand: SD 0.386 0.392 0.340 0.335 0.246 0.230

Negative demand: Mean 0.659 0.652 0.373 0.463 0.251 0.236
Negative demand: SD 0.437 0.440 0.300 0.327 0.225 0.206

Observations 727 757 728 764 770 733

Note:

This table summarizes the raw actions from experiment 1 across all 18 treatment arms.
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Table C2—Game-level regressions: experiment 1

Time Risk Dictator
Aversion Game

Positive demand 0.025 0.067 0.121
(0.024) (0.021) (0.015)

Negative demand -0.124 -0.079 -0.054
(0.026) (0.021) (0.015)

Control Mean 0.779 0.496 0.297

Observations 1484 1492 1503
Note: This table shows the effect of the positive and negative demand treatment at the game level based
on the raw actions (pooling across incentivized and unincentivized choices).
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Table C3—Strong Demand (Experiment 1)

(1) (2) (3) (4) (5)

Positive Demand 0.242 0.191 0.280 0.017 0.457
(0.035) (0.049) (0.048) (0.189) (0.058)

Negative Demand -0.247 -0.257 -0.269 -0.206 -0.203
(0.036) (0.051) (0.049) (0.175) (0.055)

Positive demand × interactant 0.103 -0.072 0.236
(0.070) (0.070) (0.192)

Negative demand × interactant 0.021 0.044 -0.044
(0.072) (0.072) (0.179)

Interactant -0.096 -0.046 -0.082
(0.051) (0.051) (0.141)

Positive Demand × Risk -0.258
(0.085)

Negative Demand × Risk -0.031
(0.083)

Positive Demand × Time -0.393
(0.085)

Negative Demand × Time -0.114
(0.087)

Constant -0.149 -0.101 -0.125 -0.070 -0.343
(0.025) (0.035) (0.034) (0.139) (0.040)

Interactant Monetary Incentive Male Passed attention check
Adjusted R2 0.041 0.041 0.041 0.041 0.052
Positive demand ≤ 0 0.000
Adjusted p-value 0.010
Negative demand ≥ 0 0.000
Adjusted p-value 0.010
Positive demand = negative demand 0.000
Adjusted p-value 0.010
(Positive demand - negative demand)* interaction = 0 0.240 0.099 0.102
Risk*(pos - neg) = Time*(pos - neg) 0.552
Adjusted p-value 0.283
Risk*(positive demand - negative demand) = 0 0.006
Adjusted p-value 0.011
Time*(positive demand - negative demand) = 0 0.001
Adjusted p-value 0.006
Joint F-test .001
Observations 4479 4479 4479 4479 4479

Note: This table summarizes the results from experiment 1. The outcome variable (action chosen) is
standardized at the game level using the mean and standard deviation of the negative demand group.
Robust standard errors are in parentheses. Lower section of the table reports p-values on pre-specified
hypothesis tests.
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Table C4—Beliefs about the experimental objective and hypothesis: Strong Demand

Belief: Belief:
Want High Expect High

Positive - Negative 0.278 0.181
(0.017) (0.018)

Adjusted p-value [0.001] [0.001]

Positive - Neutral 0.161 0.143
(0.017) (0.018)

Adjusted p-value [0.001] [0.001]

Negative - Neutral -0.116 -0.038
(0.018) (0.018)

Adjusted p-value [0.001] [0.006]

Mean (No Demand) 0.543 0.451
Observations 4479 4479

Note: The outcome variables take value one if the respondents believed that the experimenter wanted
(column 1) or expected (column 2) a high action and zero if they wanted or expected a low action.
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C2. Pre-analysis Plan 2

• Table C5 and Figure C2 summarize the means, standard errors, and corre-

sponding 95 confidence intervals from experiment 2 across all 12 treatment

arms. Table C6 displays the game-level regressions based on the raw data

showing the control mean from the “no demand condition” as well as the

coefficients on the positive demand treatment indicator and the negative

demand treatment indicator.

• Balance tests for this experiment are in Table D2 in Section D. We find

a slight imbalance for an indicator taking value 1 for those in part-time

employment. Table C8 shows the main results controlling for this indicator.

• Table C7 displays the main effects of the positive and negative demand

treatment as well as heterogeneous treatment effects by gender, attention

and whether choices are hypothetical or incentivized. This table also sum-

marizes the results of the tests we pre-specified.

– Column (1) of Table C7 shows that people increase their actions in

response to the positive demand treatments (p<0.001), but do not

significantly decrease their actions in response to the negative demand

treatments (p=0.221). The overall sensitivity in response to demand is

non-zero (p<0.001). False-discovery rate corrected p-values reach the

same conclusions.

– In column (2) we show that there is no significant treatment hetero-

geneity depending on whether choices are hypothetical or incentivized

(p=0.313).

– In column (3), we find no significant treatment heterogeneity in re-

sponse to demand between men and women (p=0.252).

– In column (4) we test whether attention moderates the response to

demand treatments. We find no significant heterogeneity by attention

(p=0.530).

– In column (5) we examine heterogeneity across games. We find that

overall sensitivity in the dictator game was significantly higher in the

risk game (p=0.046).
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• Table C10 explores how people’s beliefs about whether the experimenter

wanted (column 1) or expected (column 2) a high action. Table C10 shows

the results for the tests we pre-specified.

– People in the positive demand condition are more likely to think that

the experimenter wanted a high action (p<0.001) and that the exper-

imenter expected a high action (p<0.001).

– People in the negative demand condition are less likely to think that

the experimenter wanted a high action (p<0.001) and that the exper-

imenter expected a high action (p<0.001).

– Overall, people in the positive demand condition are significantly more

likely to think that the experimenter wanted a high action or expected

a high action compared to people in the negative demand condition

(p<0.001).

– False-discovery rate corrected p-values reach the same conclusions.

• In Table C11 we report results confirming that people in the incentive condi-

tion are more likely to believe that the task involved real money (p<0.001).

• In Table C9 we test for differences between strong and weak demand pooling

data from experiment 1 and 2. We find that the overall sensitivity to strong

demand is significantly higher pooling across games ((p<0.001), as seen in

column (1)), for the dictator game ((p<0.001), as seen in column (2)), and

for the risk game ((p<0.001), as seen in column (3)). False-discovery rate

corrected p-values reach the same conclusions.

• Table C12 shows that there was no differential attrition across treatment

arms.
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Figure C2. Overview of raw data: Experiment 2
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Note: This figure summarizes the mean actions and corresponding 95 confidence intervals from experi-
ment 2 across all 12 treatment arms

Table C5—Overview of raw data: experiment 2

Risk Aversion Dictator Game

Incentivized Hypothetical Incentivized Hypothetical

Unconditional Means

Positive demand: Mean 0.524 0.587 0.382 0.396
Positive demand: SD 0.348 0.335 0.222 0.224

No demand: Mean 0.541 0.536 0.313 0.356
No demand: SD 0.339 0.350 0.234 0.215

Negative demand: Mean 0.472 0.585 0.318 0.332
Negative demand: SD 0.317 0.325 0.226 0.219

Observations 739 734 758 719

Note: This table summarizes the raw action data from experiment 2 across all 12 treatment arms.
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Table C6—Game-level regressions: experiment 2

Risk Dictator
Aversion Game

Positive demand 0.017 0.055
(0.022) (0.014)

Negative demand -0.008 -0.009
(0.021) (0.014)

Control Mean 0.539 0.334

Observations 1473 1477
Note: This table shows the effect of the positive and negative demand treatment at the game level based
on the raw action data (pooling across incentivized and unincentivized choices).

Table C7—Weak Demand (Experiment 2)

(1) (2) (3) (4) (5)

Positive Demand 0.127 0.153 0.085 0.067 0.206
(0.043) (0.060) (0.056) (0.116) (0.054)

Negative Demand -0.032 0.037 -0.029 -0.023 -0.036
(0.042) (0.060) (0.055) (0.109) (0.054)

Pos. demand × interactant -0.054 0.090 0.070 -0.155
(0.085) (0.086) (0.124) (0.085)

Neg. demand × interactant -0.138 -0.006 -0.010 0.012
(0.084) (0.085) (0.118) (0.083)

Interactant -0.066 -0.032 -0.217 0.192
(0.060) (0.061) (0.081) (0.060)

Interactant Monetary Incentive Male Passed attention check Risk
Adjusted R-squared 0.005 0.009 0.004 0.009 0.011
Pos. demand ≤ 0 0.001
Adjusted p-value 0.010
Neg. demand ≥ 0 0.221
Adjusted p-value 0.070
Pos. demand = neg. demand 0.000
Adjusted p-value 0.010
(Pos. - neg.) × interactant = 0 0.313 0.252 0.530 0.046
Observations 2950 2950 2950 2950 2950

Note: This table summarizes the results from experiment 2. The outcome variable (action chosen) is
standardized at the game level using the mean and standard deviation of the negative demand group.
Robust standard errors are in parentheses. Lower section of the table reports p-values on pre-specified
hypothesis tests.
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Table C8—Weak Demand (Experiment 2): controlling for imbalances

(1) (2) (3) (4) (5)

Positive Demand 0.128 0.154 0.086 0.069 0.208
(0.043) (0.060) (0.056) (0.115) (0.054)

Negative Demand -0.032 0.037 -0.029 -0.023 -0.036
(0.042) (0.060) (0.055) (0.109) (0.054)

Pos. demand × interactant -0.054 0.089 0.069 -0.155
(0.085) (0.086) (0.124) (0.085)

Neg. demand × interactant -0.139 -0.006 -0.010 0.012
(0.084) (0.085) (0.118) (0.083)

Interactant -0.066 -0.030 -0.217 0.193
(0.060) (0.061) (0.081) (0.060)

Interactant Monetary Incentive Male Passed attention check Risk
Adjusted R-squared 0.004 0.009 0.004 0.009 0.011
Pos. demand ≤ 0 0.001
Adjusted p-value 0.010
Neg. demand ≥ 0 0.222
Adjusted p-value 0.070
Pos. demand = neg. demand 0.000
Adjusted p-value 0.010
(Pos. - neg.) × interactant = 0 0.307 0.255 0.538 0.045
Observations 2950 2950 2950 2950 2950

Note: This table summarizes the results from experiment 2. The outcome variable (action chosen) is
standardized at the game-level using the mean and standard deviation of the negative demand group.
Robust standard errors are in parentheses. Here we control for an indicator taking value 1 for those in
part-time employment due to imbalance on this variable. Lower section of the table reports p-values on
pre-specified hypothesis tests.
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Table C9—Comparing experiments 1 and 2

(1) (2) (3)

Positive Demand=1 0.127 0.206 0.051
(0.043) (0.054) (0.065)

Experiment 1=1 -0.137 -0.140 -0.128
(0.043) (0.056) (0.064)

Positive Demand=1 × Experiment 1=1 0.203 0.251 0.148
(0.060) (0.080) (0.090)

Negative Demand=1 -0.032 -0.036 -0.024
(0.042) (0.054) (0.063)

Negative Demand=1 × Experiment 1=1 -0.182 -0.167 -0.211
(0.059) (0.077) (0.088)

Constant -0.105 -0.203 -0.011
(0.030) (0.039) (0.046)

Sample All Dictator Game Investment
Adjusted R2 0.034 0.056 0.021
H0 : (Positive Demand - Negative Demand)*Interaction = 0 0.000 0.000 0.000
Adjusted p-value 0.001 0.001 0.001
Observations 5945 2980 2965

Note: This table uses action data from the investment game and dictator game from experiments 1
(strong demand treatments) and 2 (weak demand treatments), standardized at the game-experiment
level using the mean and standard deviation of the negative demand treatment group. The dummy
experiment 1 takes value 1 for respondents from experiment 1. Column (1) pools the data from both
games, column (2) uses dictator game data and column (3) investment game data. Adjusted p-values
are corrected for false-discovery rate across the three tests.
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Table C10—Beliefs about the experimental objective and hypothesis: Weak Demand (Exper-

iment 2)

Belief: Belief:
Want High Expect High

Positive - Negative 0.332 0.402
(0.021) (0.020)

Adjusted p-value [0.001] [0.001]

Positive - Neutral 0.171 0.217
(0.022) (0.022)

Adjusted p-value [0.001] [0.001]

Negative - Neutral -0.161 -0.185
(0.022) (0.020)

Adjusted p-value [0.001] [0.001]

Mean (No Demand) 0.485 0.392
Observations 2950 2950

Note: This table uses data from all respondents who completed experiment 2. The outcome variables
take value one if the respondents believed that the experimenter wanted (column 1) or expected (column
2) a high action and zero if they wanted or expected a low action.

Table C11—Beliefs about whether the experiment is incentivized

(1)
Belief: Real Money

Monetary Incentive 0.367
(0.016)

Control Mean 0.139
R2 0.153
Observations 2950

Note: This table uses data from all respondents who completed experiment 2. The outcome variable
takes value one if the respondent believes that the tasks in the experiment involve real money and value
zero otherwise. Monetary incentive takes value 1 for respondents whose choices were incentivized, and
takes value 0 for respondents whose choices were hypothetical.
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Table C12—Attrition across treatment arms

(1)
Finished

Positive Demand 0.00601
(0.003)

Negative Demand 0.00104
(0.003)

Mean (no demand) 0.990
R2 0.00145
Observations 2964

Note: This table uses data from all respondents who started experiment 2. Finished takes value one for
all respondents who completed the experiment.

C3. Pre-analysis Plan 3

• Balance tests for this experiment are in Table D3 in Section D. We found

a slight imbalance on an indicator for Hispanic race. Table C15 shows our

main results controlling for this variable.

• Table C13 and Figure C3 summarizes the means, standard errors, and cor-

responding 95 percent confidence intervals from experiment 3 across all 6

treatment arms (excluding the 4 cent treatment that was used only for

structural estimation).

• Table C14 displays the main effects of the positive and negative demand

treatment as well as heterogeneous treatment effects by gender, and whether

people are paid a 1-cent bonus or no bonus. This table summarizes the

results for the main pre-specified tests.

– Column (1) shows that people increase their effort in response to the

positive demand treatments (p<0.001), decrease their effort in response

to the negative demand treatments (p<0.001). Moreover, the over-

all sensitivity in response to demand is non-zero (p<0.001). False-

discovery rate corrected p-values reach the same conclusions.

– In column (2), we test for systematic differences by incentive level in

response to the demand treatments. Sensitivity was higher in the no-

incentive condition compared to the 1-cent incentive condition (p<0.001).
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– In column (3), we test for gender differences in response to the demand

treatments. Sensitivity was not significantly different for women than

for men (p=0.946).

• Table C16 explores beliefs about whether the experimenter wanted (column

1) or expected (column 2) a high action.

– People in the positive demand condition are more likely to think that

the experimenter wanted a high action (p<0.001) and that the exper-

imenter expected a high action (p<0.001).

– People in the negative demand condition are less likely to think that

the experimenter wanted a high action (p<0.001) and that the exper-

imenter expected a high action (p<0.001).

– Overall, people in the positive demand condition are significantly more

likely to think that the experimenter wanted a high action or expected

a high action compared to people in the negative demand condition

(p<0.001).

• False-discovery rate corrected p-values reach the same conclusions.

• In Table C17, we show that there is no differential attrition across treatment

arms.
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Figure C3. Overview of raw data: Experiment 3
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Note: This figure summarizes the mean actions (expressed in points scored) and corresponding 95 con-
fidence intervals from experiment 3 across all 6 treatment arms.

Table C13—Overview of raw data: experiment 3

Effort

1-cent bonus No bonus

Unconditional Means

Positive demand: Mean 0.492 0.405
Positive demand: SD 0.179 0.177

No demand: Mean 0.476 0.341
No demand: SD 0.184 0.182

Negative demand: Mean 0.449 0.255
Negative demand: SD 0.162 0.176

Observations 714 731

Note: This table summarizes the raw action data from experiment 3 across all 6 treatment arms.
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Table C14—Effort (z-scored) with strong demand

(1) (2) (3)

Positive Demand 0.209 0.333 0.313
(0.061) (0.085) (0.107)

Negative Demand -0.305 -0.450 -0.198
(0.061) (0.085) (0.103)

Positive demand × interactant -0.249 -0.182
(0.123) (0.129)

Negative demand × interactant 0.305 -0.191
(0.121) (0.126)

Interactant 0.082 0.136
(0.088) (0.093)

Constant 0.068 0.027 -0.009
(0.044) (0.061) (0.078)

Interactant 1-cent incentive Male
Adjusted R2 0.046 0.061 0.046
Positive demand ≤ 0 0.000
Adjusted p-value 0.010
Negative demand ≥ 0 0.000
Adjusted p-value 0.010
Positive demand = negative demand 0.000
Adjusted p-value 0.010
(Positive demand - negative demand)* interaction = 0 0.000 0.946
Observations 1445 1445 1445

Note: This table summarizes the results from experiment 3. The outcome variable (action chosen) is
standardized at the incentive treatment level using the mean and standard deviation of the negative
demand group. Lower section of the table reports p-values on pre-specified hypothesis tests.
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Table C15—Effort (z-scored) with strong demand: with control for imbalance

(1) (2) (3)

Positive Demand 0.221 0.344 0.319
(0.061) (0.085) (0.107)

Negative Demand -0.299 -0.444 -0.200
(0.061) (0.085) (0.103)

Positive demand × interactant -0.248 -0.173
(0.122) (0.128)

Negative demand × interactant 0.305 -0.177
(0.120) (0.126)

Interactant 0.081 0.127
(0.088) (0.092)

Constant 0.050 0.009 -0.022
(0.045) (0.061) (0.078)

Interactant 1-cent incentive Male
Adjusted R2 0.049 0.064 0.049
Positive demand ≤ 0 0.000
Adjusted p-value 0.010
Negative demand ≥ 0 0.000
Adjusted p-value 0.010
Positive demand = negative demand 0.000
Adjusted p-value 0.010
(Positive demand - negative demand)* interaction = 0 0.000 0.974
Observations 1445 1445 1445

Note: This table summarizes the results from experiment 3. The outcome variable (action chosen)
is standardized at the incentive treatment level using the mean and standard deviation of the negative
demand group. Here we control for an indicator taking value 1 for Hispanics as we found an imbalance for
this variable across demand treatment arms. Lower section of the table reports p-values on pre-specified
hypothesis tests.
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Table C16—Beliefs: Effort with strong demand

Belief: Belief:
Want High Expect High

Positive - Negative 0.459 0.414
(0.027) (0.028)

Adjusted p-value [0.001] [0.001]

Positive - Neutral 0.170 0.190
(0.026) (0.028)

Adjusted p-value [0.001] [0.001]

Negative - Neutral -0.289 -0.224
(0.031) (0.031)

Adjusted p-value [0.001] [0.001]

Mean (No Demand) 0.688 0.640
Observations 1445 1445

Note: The outcome variables take value one if the respondents believed that the experimenter wanted
(column 1) or expected (column 2) a high action and zero if they wanted or expected a low action.

Table C17—Attrition across treatment arms

(1)
Finished

Positive Demand -0.000449
(0.009)

Negative Demand 0.00679
(0.010)

Mean (no demand) 0.990
R2 0.000366
Observations 1739

Note: Finished takes value one for all respondents who completed the experiment.
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C4. Pre-analysis Plan 4

• Balance tests for this experiment are in Table D4 in Section D and indicate

that there are no imbalances.

• Table C18 and Figure C4 summarize the means, standard errors, and cor-

responding 95 percent confidence intervals from experiment 4 across all

treatment arms. Table C19 displays the game-level regressions based on

the raw data showing the control mean from the “no demand condition” as

well as the coefficients on the positive demand treatment indicator and the

negative demand treatment indicator.

• Table C20 displays the main effects of the positive and negative demand

treatment as well as heterogeneous treatment effects by strong vs. weak

demand treatment, gender, attention and game. This table also summarizes

the results for the main pre-specified tests.

– Column (1) shows that people increase their actions in response to

the positive demand treatments (p<0.001), decrease their actions in

response to the negative demand treatments (p<0.001). Moreover,

the overall sensitivity in response to demand is non-zero (p<0.001).

False-discovery rate corrected p-values reach the same conclusions.

– Pooling across games, column (2) finds that sensitivity was significantly

higher in the strong treatments than the weak treatments (p<0.001).

– Pooling across games and demand treatments, column (3) finds sensi-

tivity was significantly higher for women than for men (p=0.014).

– Pooling across games and demand treatments, column (4) finds that

sensitivity was significantly higher for attentive respondents than for

inattentive respondents (p<0.001).

– Pooling across demand treatments, column (5) finds that sensitivity in

the dictator game was significantly higher than sensitivity in the risk

game (p=0.001).

• Table C22 explores how people’s beliefs about whether the experimenter

wanted (column 1) or expected (column 2) a high action. Table C22 shows

the results for the tests we pre-specified.
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– People in the positive demand condition are more likely to think that

the experimenter wanted a high action (p<0.001) and that the exper-

imenter expected a high action (p<0.001).

– People in the negative demand condition are less likely to think that

the experimenter wanted a high action (p<0.001) and that the exper-

imenter expected a high action (p<0.001).

– Overall, people in the positive demand condition are significantly more

likely to think that the experimenter wanted a high action (p<0.001)

or expected a high action compared to people in the negative demand

condition (p<0.001).

– False-discovery rate corrected p-values reach the same conclusions.

• Table C21 examines demand sensitivity by population and shows that there

were no systematic differences (p=0.602) when pooling across games.

• Table C23 shows that there was no differential attrition across treatment

arms.

Figure C4. Overview of raw data: Experiment 4
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Note: This figure summarizes the means and corresponding 95 confidence intervals from experiment 4
across all treatment arms.
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Table C18—Overview of raw data: experiment 4

Risk Aversion Dictator Game

Strong Weak Strong Weak

Unconditional Means

Positive demand: Mean 0.656 0.633 0.650 0.575
Positive demand: SD 0.341 0.337 0.300 0.292

No demand: Mean 0.575 0.575 0.522 0.522
No demand: SD 0.358 0.358 0.289 0.289

Negative demand: Mean 0.519 0.570 0.416 0.502
Negative demand: SD 0.331 0.351 0.286 0.291

Observations 900 880 896 862

Note: This table summarizes the raw data from experiment 4 across all treatment arms.

Table C19—Game-level regressions: experiment 4

Risk Dictator
Aversion Game

Positive demand 0.070 0.091
(0.025) (0.021)

Negative demand -0.031 -0.065
(0.025) (0.021)

Control Mean 0.575 0.522

Observations 1468 1465

Note: This table shows the effect of the positive and negative demand treatment at the game level based
on the raw data (pooling across strong and weak demand treatments).
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Table C20—Representative Sample with strong and weak demand treatments (Experiment 4)

(1) (2) (3) (4) (5)

Positive Demand 0.281 0.193 0.322 0.244 0.555
(0.055) (0.063) (0.063) (0.061) (0.064)

Negative Demand -0.159 -0.037 -0.224 -0.083 -0.033
(0.055) (0.064) (0.061) (0.061) (0.064)

Pos. demand × interactant 0.175 -0.084 0.113 -0.545
(0.064) (0.064) (0.064) (0.062)

Neg. demand × interactant -0.237 0.139 -0.222 -0.257
(0.063) (0.064) (0.063) (0.063)

Interactant Strong demand treatment Male Passed attention check Risk
Adjusted R-squared 0.031 0.038 0.033 0.035 0.060
Pos. demand ≤ 0 0.000
Adjusted p-value 0.010
Neg. demand ≥ 0 0.002
Adjusted p-value 0.010
Pos. = neg. demand 0.000
Adjusted p-value 0.010
(Pos. - neg.) × interactant = 0 0.000 0.014 0.000 0.001
Observations 2933 2933 2933 2933 2933

Note: This table summarizes the results from experiment 4. The outcome variable (action chosen) is
standardized at the game level using the mean and standard deviation of the negative demand group.
Lower section of the table reports p-values on pre-specified hypothesis tests.

Table C21—Comparing Representative and MTurk Samples

(1) (2) (3)

Positive Demand=1 0.261 0.423 0.095
(0.043) (0.057) (0.064)

Representative Sample=1 0.522 0.851 0.208
(0.054) (0.076) (0.075)

Positive Demand=1 × Representative Sample=1 0.021 -0.079 0.114
(0.070) (0.097) (0.097)

Negative Demand=1 -0.148 -0.042 -0.251
(0.042) (0.056) (0.061)

Negative Demand=1 × Representative Sample=1 -0.011 -0.202 0.160
(0.069) (0.096) (0.096)

Constant -0.226 -0.344 -0.111
(0.031) (0.041) (0.045)

Sample All Dictator Game Investment
Adjusted R2 0.093 0.165 0.041
H0 : (Positive Demand - Negative Demand)*Repres. Sample = 0 0.602 0.149 0.592
Adjusted p-value 0.813 0.813 0.813
Observations 5928 2993 2935

Note: This table uses data from the incentivized MTurk respondents from experiments 1 and 2 and the
representative online panel (experiment 4). Representative Sample is a dummy variable taking value 1
for respondents from the representative online panel and value zero for the MTurk respondents. Lower
section of the table reports p-values on pre-specified hypothesis tests.
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Table C22—Beliefs about the experimental objective and hypothesis: Representative Sample

Belief: Belief:
Want High Expect High

Positive - Negative 0.206 0.205
(0.020) (0.020)

Adjusted p-value [0.001] [0.001]

Positive - Neutral 0.068 0.091
(0.024) (0.025)

Adjusted p-value [0.001] [0.001]

Negative - Neutral -0.138 -0.114
(0.025) (0.025)

Adjusted p-value [0.001] [0.001]

Mean (No Demand) 0.602 0.511
Observations 2933 2933

Note: The outcome variables take value one if the respondents believed that the experimenter wanted
(column 1) or expected (column 2) a high action and zero if they wanted or expected a low action.

Table C23—Attrition across treatment arms: Experiment 4

(1)
Finished

Positive Demand 0.000710
(0.004)

Negative Demand -0.000400
(0.004)

Mean (no demand) 0.990
R2 0.0000390
Observations 2952

Note: This table uses data from all respondents who started experiment 4. Finished takes value one for
all respondents who completed the experiment.
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C5. Pre-analysis Plan 5

This plan encompasses experiments 5 and 6 and pre-specified the collecting

of all incentivized MTurk data together by demand treatment type, to present

results in single tables and figures.

• Balance tests for the experiments are Tables D5 and D6 in Section D and

indicate that there are no imbalances.

• Figure 2 and Tables 2 and 1 (included in the paper) summarize the raw

data and sensitivities across games.

• Next, we consider whether sensitivity to weak demand treatments differs

across games. In Table C24 we show little evidence of statistically signif-

icant differences in sensitivity across all games (p=0.241 with effort tasks

included, p=0.437 when excluded).

• Table C24 shows that there are large differences in sensitivity across games

in response to strong demand both when all 11 games are considered and

when the effort tasks are excluded (p<0.001).

• In Table C25 we conduct a pooled test with all MTurk experiments examin-

ing whether sensitivity varies between strong and weak demand treatments.

We find a larger response to strong compared to weak demand treatments

(p<0.001).
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Table C24—Differences in response to demand across games

(1) (2)

Positive Demand=1 1.058 0.289
(0.133) (0.125)

Ambiguity 0.149 0.007
(0.110) (0.102)

DG -0.153 -0.248
(0.103) (0.089)

Effort: incentive 0.332 0.085
(0.104) (0.100)

Effort: no incentive -0.056 0.049
(0.105) (0.101)

Lying 0.241 0.015
(0.123) (0.102)

Risk -0.138 -0.195
(0.103) (0.095)

Time 0.100 0.021
(0.113) (0.099)

Trust 0.124 0.015
(0.109) (0.105)

UG 1 0.137 0.015
(0.118) (0.104)

UG 2 0.230 0.015
(0.118) (0.100)

Positive Demand=1 × Ambiguity -0.596 -0.116
(0.165) (0.161)

Positive Demand=1 × DG -0.364 -0.049
(0.156) (0.146)

Positive Demand=1 × Effort: incentive -0.829 -0.211
(0.158) (0.156)

Positive Demand=1 × Effort: no incentive -0.275 -0.352
(0.157) (0.161)

Positive Demand=1 × Lying -0.454 -0.247
(0.178) (0.161)

Positive Demand=1 × Risk -0.530 -0.133
(0.156) (0.155)

Positive Demand=1 × Time -0.709 -0.277
(0.164) (0.158)

Positive Demand=1 × Trust -0.495 -0.213
(0.165) (0.163)

Positive Demand=1 × UG 1 -0.374 -0.132
(0.172) (0.168)

Positive Demand=1 × UG 2 -0.308 -0.008
(0.173) (0.161)

Constant -0.367 -0.015
(0.087) (0.072)

Treatment Strong Weak
Adjusted R2 0.102 0.012
P-value(Omnibus F-Test) 0.000 0.241
Adjusted p-values 0.001 0.191
P-value(Omnibus F-Test): without effort tasks 0.001 0.437
Adjusted p-values 0.001 0.279
Observations 4800 4450

Note: Outcome variable (action chosen) is standardized at the game level. We pool all real stakes MTurk
observations across all experiments. Column (1) presents results from the strong demand treatments and
column 2 presents results from the weak demand treatments.
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Table C25—Differences in response to strong vs. weak demand treatments

(1)
Z-scored behavior

Strong × Positive Demand 0.471
(0.042)

Positive demand 0.133
(0.030)

R2 0.0455
Observations 9250

Note: Outcome variable (action chosen) is standardized at the game level. We pool all real stakes MTurk
observations across all experiments.
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C6. Pre-analysis Plan 6

• Balance tests for this experiment are in Table D7 in Section D. We found a

slight imbalance for men and people in part-time employment. Therefore,

in Table C26 we show the main results controlling for an indicator taking

value 1 for men and an indicator taking value 1 for people in part-time

employment.

• Figures 3 (included in the paper) and C5 present the raw data graphically.

Figure 3 plots task 2 actions against task 1 actions – points above the 45

degree line correspond to increases in actions. Figure C5 plots the distri-

butions of changes of actions between task 1 and task 2 (positive difference

means action increased in task 2).

• Table A2 (included in the paper) Panel A summarizes behavior in tasks

1 and 2. The relevant columns are headed “Within,” Task 1 choices are

labeled “no demand” and Task 2 choices are either labeled Positive or Neg-

ative demand. Panel B of Table A2 shows the sensitivities computed from

raw or standardized (at the game level) task 2 actions.

• Table A2 compares sensitivity estimates and raw choices from the “within”

experiment (experiment 7) and the incentivized MTurk “between exper-

iment” with strong demand treatments (experiment 1). We do not find

statistically significant differences in sensitivity.

• Table A5 (in the main web Appendix) documents for each game and demand

treatment the number of strict compliers and strict defiers. Defiance rates

were very low at around 5 percent.

• Table A5 also displays the average change in action between tasks 1 and 2

for each treatment arm and for compliers and defiers separately.
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Table C26—Within Design (Experiment 7): with controls for imbalance

Dictator Risk

Within Between Difference Within Between Difference

Panel A: Unconditional Means

Positive demand 0.384 0.434 -0.045 0.560 0.550 0.010
(0.017) (0.015) (0.023) (0.021) (0.020) (0.029)

No demand 0.273 0.282 -0.005 0.448 0.466 -0.023
(0.011) (0.015) (0.019) (0.015) (0.022) (0.026)

Negative demand 0.195 0.251 -0.044 0.318 0.373 -0.058
(0.014) (0.014) (0.021) (0.019) (0.019) (0.027)

Panel B: Sensitivity (positive - negative)

Raw data 0.182 0.190 -0.007 0.244 0.177 0.068
(0.023) (0.021) (0.031) (0.029) (0.027) (0.040)

Z-score 0.763 0.745 -0.005 0.715 0.520 0.197
(0.095) (0.086) (0.126) (0.084) (0.080) (0.117)

Panel C: Monotonicity

Positive - Neutral (z-score) 0.514 0.617 -0.110 0.377 0.248 0.137
(0.044) (0.088) (0.128) (0.041) (0.087) (0.124)

Negative - Neutral (z-score) -0.380 -0.128 -0.252 -0.427 -0.272 -0.155
(0.045) (0.086) (0.122) (0.042) (0.084) (0.119)

Observations 499 770 1269 500 728 1228

Note: This table uses data from the within design (experiment 7) and incentivized choices from the
dictator game and the investment game in experiment 1. These experiments employ strong demand
treatments. Here we control for an indicator taking value 1 for men and another indicator value taking
value 1 for people in part-time employment. as we had found an imbalance for this variable across
demand treatment arms
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Figure C5. Distribution of Responses: Within Design
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Note: This figure uses MTurk data from experiment 7 and displays the distribution of changes in behavior
(in task 2 compared to task 1) to our strong demand treatments.
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D. Balance tables, summary statistics, and attrition

Table D1—Balance Table: Experiment 1 (Strong Demand)

No demand Pos. demand Neg. demand
P-value(Pos. demand -

no demand)
P-value(Neg. demand -

no demand)
P-value(Pos. demand -

neg. demand)
Observations

Male 0.511 0.519 0.497 0.639 0.442 0.215 4479

Income 51560.364 52459.736 53429.878 0.387 0.068 0.346 3995

Age 36.226 36.464 36.414 0.560 0.653 0.904 4479

Household Size 3.711 3.649 3.626 0.225 0.097 0.640 4479

White 0.773 0.785 0.774 0.429 0.974 0.451 4479

Black 0.070 0.067 0.071 0.676 0.927 0.612 4479

Hispanic 0.053 0.057 0.055 0.592 0.824 0.757 4479

Asian 0.079 0.063 0.075 0.091 0.703 0.194 4479

Full-time employment 0.484 0.508 0.522 0.194 0.039 0.430 4479

Part-time employment 0.128 0.120 0.115 0.541 0.280 0.632 4479

Unemployed 0.144 0.133 0.130 0.409 0.269 0.770 4479

Bachelor Degree 0.353 0.369 0.389 0.360 0.044 0.264 4479

Conservative 0.230 0.238 0.242 0.641 0.459 0.778 4441

Number of HITs 9393.289 9217.178 8651.406 0.762 0.202 0.321 4479

Joint

Note: In this table we present evidence on the experimental integrity in experiment 1. The p-value of
the joint F-test when comparing covariates in the positive and negative demand condition is 0.9110. The
p-value of the joint F-test when comparing covariates in the positive and no-demand demand condition
is 0.6965. The p-value of the joint F-test when comparing covariates in the negative and no-demand
demand condition is 0.2402.
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Table D2—Balance Table: Experiment 2 (Weak Demand)

No demand Pos. demand Neg. demand
P-value(Pos. demand -

no demand)
P-value(Neg. demand -

no demand)
P-value(Pos. demand -

neg. demand)
Observations

Male 0.466 0.467 0.477 0.949 0.630 0.678 2950

Income 51017.241 51410.405 51949.829 0.757 0.455 0.664 2612

Age 35.909 35.871 35.227 0.940 0.171 0.197 2950

Household Size 3.696 3.686 3.757 0.880 0.346 0.275 2950

White 0.785 0.761 0.749 0.194 0.060 0.568 2950

Black 0.069 0.076 0.076 0.525 0.517 0.994 2950

Hispanic 0.054 0.051 0.057 0.756 0.723 0.507 2950

Asian 0.066 0.070 0.087 0.705 0.083 0.178 2950

Full-time employment 0.493 0.464 0.467 0.199 0.236 0.915 2950

Part-time employment 0.130 0.099 0.125 0.033 0.742 0.071 2950

Unemployed 0.101 0.139 0.129 0.010 0.056 0.493 2950

Bachelor Degree 0.367 0.353 0.376 0.524 0.662 0.283 2950

Conservative 0.273 0.254 0.243 0.342 0.131 0.583 2927

Number of HITs 5854.863 5642.157 5306.841 0.703 0.314 0.529 2950

Note: In this table we present evidence on the experimental integrity in experiment 2. The p-value of
the joint F-test when comparing covariates in the positive and negative demand condition is 0.7084. The
p-value of the joint F-test when comparing covariates in the positive and no-demand demand condition
is 0.2332. The p-value of the joint F-test when comparing covariates in the negative and no-demand
demand condition is 0.4838.
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Table D3—Balance Table: Experiment 3 (Effort Experiment with strong demand)

No demand Pos. demand Neg. demand
P-value(Pos. demand -

no demand)
P-value(Neg. demand -

no demand)
P-value(Pos. demand -

neg. demand)
Observations

Male 0.558 0.574 0.536 0.598 0.439 0.235 1691

Income 33596.974 32213.115 32457.983 0.170 0.265 0.822 1691

Age 37.444 37.359 36.618 0.906 0.251 0.352 1691

Household Size 3.750 3.783 3.771 0.690 0.790 0.894 1691

White 0.752 0.783 0.761 0.217 0.749 0.411 1691

Black 0.109 0.084 0.084 0.149 0.152 0.999 1691

Hispanic 0.055 0.025 0.046 0.006 0.493 0.070 1691

Asian 0.065 0.072 0.074 0.634 0.555 0.914 1691

Full-time employment 0.509 0.498 0.536 0.707 0.364 0.241 1691

Part-time employment 0.125 0.125 0.107 0.993 0.337 0.387 1691

Unemployed 0.105 0.121 0.107 0.380 0.886 0.502 1691

Bachelor Degree 0.395 0.355 0.370 0.155 0.382 0.623 1691

Republican 0.250 0.289 0.273 0.139 0.382 0.585 1691

Note: In this table we present evidence on the integrity of the randomization in experiment 3. The
p-value of the joint F-test when comparing covariates in the positive and negative demand condition
is 0.9171. The p-value of the joint F-test when comparing covariates in the positive and no-demand
demand condition is 0.1012. The p-value of the joint F-test when comparing covariates in the negative
and no-demand demand condition is 0.4845.

Table D4—Balance Table: Experiment 4 (Representative Sample)

No demand Pos. demand Neg. demand
P-value(Pos. demand -

no demand)
P-value(Neg. demand -

no demand)
P-value(Pos. demand -

neg. demand)
Observations

Male 0.488 0.485 0.468 0.912 0.446 0.428 2933

Income 68357.264 65309.037 67175.470 0.253 0.662 0.398 2882

Age 47.972 46.899 47.879 0.195 0.911 0.147 2933

Household Size 3.332 3.312 3.333 0.752 0.983 0.692 2926

White 0.801 0.772 0.784 0.159 0.399 0.505 2927

Black 0.070 0.069 0.062 0.968 0.518 0.457 2927

Hispanic 0.051 0.064 0.062 0.269 0.379 0.799 2927

Asian 0.043 0.061 0.062 0.104 0.079 0.866 2927

Full-time employment 0.499 0.485 0.496 0.566 0.888 0.604 2933

Part-time employment 0.074 0.078 0.091 0.768 0.218 0.263 2933

Unemployed 0.068 0.050 0.052 0.132 0.188 0.818 2933

Bachelor Degree 0.331 0.352 0.330 0.368 0.975 0.262 2933

Conservative 0.350 0.352 0.351 0.921 0.962 0.951 2797

Note: In this table we present evidence on the integrity of the randomization in experiment 4. The
p-value of the joint F-test when comparing covariates in the positive and negative demand condition
is 0.7455. The p-value of the joint F-test when comparing covariates in the positive and no-demand
demand condition is 0.4909. The p-value of the joint F-test when comparing covariates in the negative
and no-demand demand condition is 0.6390.
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Table D5—Balance Table: Experiment 5 (Many Task experiment)

Pos. demand Neg. demand
P-value(Pos. demand -

neg. demand)
Observations

Male 0.453 0.472 0.168 5045

Income 53324.385 52746.322 0.460 4478

Age 37.328 37.207 0.714 5045

Household Size 3.711 3.654 0.159 5045

White 0.770 0.776 0.620 5045

Black 0.078 0.072 0.434 5045

Hispanic 0.048 0.048 0.956 5045

Asian 0.075 0.078 0.773 5045

Full-time employment 0.513 0.516 0.819 5045

Part-time employment 0.115 0.113 0.830 5045

Unemployed 0.126 0.140 0.147 5045

Bachelor Degree 0.376 0.372 0.745 5045

Conservative 0.263 0.257 0.636 5019

Number of HITs 9381.041 8544.300 0.055 5045

Note: In this table we present evidence on the integrity of the randomization in experiment 5. The
p-value of the joint F-test when comparing covariates in the positive and negative demand condition is
0.1990.
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Table D6—Balance Table: Experiment 6 (Effort Experiment with weak demand treatments)

Pos. demand Neg. demand
P-value(Pos. demand -

neg. demand)
Observations

Male 0.547 0.556 0.803 769

Income 32317.708 32532.468 0.861 769

Age 37.339 37.545 0.807 769

Household Size 3.732 3.681 0.626 769

White 0.755 0.730 0.422 769

Black 0.083 0.083 0.991 769

Hispanic 0.055 0.073 0.306 769

Asian 0.081 0.075 0.780 769

Full-time employment 0.552 0.527 0.491 769

Part-time employment 0.128 0.094 0.132 769

Unemployed 0.125 0.122 0.902 769

Bachelor Degree 0.432 0.379 0.134 769

Conservative 0.266 0.325 0.078 764

Note: In this table we present evidence on the integrity of the randomization in experiment 6. The
p-value of the joint F-test when comparing covariates in the positive and negative demand condition is
0.2562.
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Table D7—Balance Table: Experiment 7 (Within Design)

Pos. demand Neg. demand
P-value(Pos. demand -

neg. demand)
Observations

Male 0.545 0.610 0.038 999

Income 53645.374 54549.763 0.604 876

Age 34.465 34.439 0.970 999

Household Size 3.533 3.540 0.938 999

White 0.732 0.743 0.696 999

Black 0.078 0.078 0.995 999

Hispanic 0.064 0.049 0.300 999

Asian 0.090 0.109 0.317 999

Full-time employment 0.520 0.569 0.118 999

Part-time employment 0.133 0.092 0.043 999

Unemployed 0.137 0.125 0.592 999

Bachelor Degree 0.408 0.386 0.475 999

Conservative 0.241 0.233 0.776 994

Note: In this table we present evidence on balance for experiment 7. The p-value of the joint F-test
when comparing covariates in the positive and negative demand condition is 0.043.

Table D8—Summary Statistics: Pooled across all experiments

Mean SD Median Min. Max. Obs.

Male 0.50 0.50 0.00 0.00 1.00 18866
Income 52105.70 32773.39 45000.00 5000.00 225000.00 17303
Age 38.25 13.02 35.00 17.00 116.00 18866
Household Size 3.63 1.40 3.00 2.00 13.00 18859
White 0.77 0.42 1.00 0.00 1.00 18860
Black 0.07 0.26 0.00 0.00 1.00 18860
Hispanic 0.05 0.22 0.00 0.00 1.00 18860
Asian 0.07 0.26 0.00 0.00 1.00 18860
Full-time employment 0.50 0.50 1.00 0.00 1.00 18866
Part-time employment 0.11 0.32 0.00 0.00 1.00 18866
Unemployed 0.12 0.32 0.00 0.00 1.00 18866
Bachelor Degree 0.37 0.48 0.00 0.00 1.00 18866
Conservative 0.27 0.44 0.00 0.00 1.00 16942
Number of HITs 8215.31 14921.14 2500.00 750.00 75000.00 12474

Note: This table summarizes the main covariates of all respondents across all 6 experiments.
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Table D9—Summary Statistics: Experiment 1 (Strong demand)

Mean SD Median Min. Max. Obs.

Male 0.51 0.50 1.00 0.00 1.00 4479
Income 52481.85 26617.99 55000.00 5000.00 100000.00 3995
Age 36.37 11.26 33.00 19.00 88.00 4479
Household Size 3.66 1.40 3.00 2.00 11.00 4479
White 0.78 0.42 1.00 0.00 1.00 4479
Black 0.07 0.25 0.00 0.00 1.00 4479
Hispanic 0.06 0.23 0.00 0.00 1.00 4479
Asian 0.07 0.26 0.00 0.00 1.00 4479
Full-time employment 0.50 0.50 1.00 0.00 1.00 4479
Part-time employment 0.12 0.33 0.00 0.00 1.00 4479
Unemployed 0.14 0.34 0.00 0.00 1.00 4479
Bachelor Degree 0.37 0.48 0.00 0.00 1.00 4479
Conservative 0.24 0.43 0.00 0.00 1.00 4441
Number of HITs 9091.59 15766.32 2500.00 750.00 75000.00 4479

Note: This table summarizes the main covariates of all respondents in experiment 1.

Table D10—Summary Statistics: Experiment 2 (Weak demand)

Mean SD Median Min. Max. Obs.

Male 0.47 0.50 0.00 0.00 1.00 2950
Income 51460.57 26145.92 55000.00 5000.00 100000.00 2612
Age 35.67 11.09 33.00 19.00 81.00 2950
Household Size 3.71 1.43 3.00 2.00 13.00 2950
White 0.77 0.42 1.00 0.00 1.00 2950
Black 0.07 0.26 0.00 0.00 1.00 2950
Hispanic 0.05 0.23 0.00 0.00 1.00 2950
Asian 0.07 0.26 0.00 0.00 1.00 2950
Full-time employment 0.47 0.50 0.00 0.00 1.00 2950
Part-time employment 0.12 0.32 0.00 0.00 1.00 2950
Unemployed 0.12 0.33 0.00 0.00 1.00 2950
Bachelor Degree 0.37 0.48 0.00 0.00 1.00 2950
Conservative 0.26 0.44 0.00 0.00 1.00 2927
Number of HITs 5600.34 12081.52 1500.00 750.00 75000.00 2950

Note: This table summarizes the main covariates of all respondents in experiment 2.
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Table D11—Summary Statistics: Experiment 3 (Effort Experiment: Strong demand)

Mean SD Median Min. Max. Obs.

Male 0.56 0.50 1.00 0.00 1.00 1691
Income 32877.00 17304.76 35000.00 5000.00 85000.00 1691
Age 37.19 12.32 36.00 21.00 70.00 1691
Household Size 3.77 1.39 4.00 2.00 12.00 1691
White 0.76 0.43 1.00 0.00 1.00 1691
Black 0.09 0.29 0.00 0.00 1.00 1691
Hispanic 0.04 0.20 0.00 0.00 1.00 1691
Asian 0.07 0.25 0.00 0.00 1.00 1691
Full-time employment 0.51 0.50 1.00 0.00 1.00 1691
Part-time employment 0.12 0.33 0.00 0.00 1.00 1691
Unemployed 0.11 0.31 0.00 0.00 1.00 1691
Bachelor Degree 0.38 0.48 0.00 0.00 1.00 1691
Republican 0.27 0.44 0.00 0.00 1.00 1691

Note: This table summarizes the main covariates of all respondents in experiment 3.

Table D12—Summary Statistics: Experiment 4 (Representative sample)

Mean SD Median Min. Max. Obs.

Male 0.48 0.50 0.00 0.00 1.00 2933
Income 66658.57 52862.72 62500.00 7500.00 225000.00 2882
Age 47.50 16.39 47.00 17.00 116.00 2933
Household Size 3.32 1.26 3.00 2.00 13.00 2926
White 0.78 0.41 1.00 0.00 1.00 2927
Black 0.07 0.25 0.00 0.00 1.00 2927
Hispanic 0.06 0.24 0.00 0.00 1.00 2927
Asian 0.06 0.23 0.00 0.00 1.00 2927
Full-time employment 0.49 0.50 0.00 0.00 1.00 2933
Part-time employment 0.08 0.28 0.00 0.00 1.00 2933
Unemployed 0.05 0.23 0.00 0.00 1.00 2933
Bachelor Degree 0.34 0.47 0.00 0.00 1.00 2933
Conservative 0.35 0.48 0.00 0.00 1.00 2797

Note: This table summarizes the main covariates of all respondents in experiment 4.
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Table D13—Summary Statistics: Experiment 5 (Many task experiment)

Mean SD Median Min. Max. Obs.

Male 0.46 0.50 0.00 0.00 1.00 5045
Income 53034.84 26174.26 55000.00 5000.00 100000.00 4478
Age 37.27 11.72 34.00 17.00 88.00 5045
Household Size 3.68 1.44 3.00 2.00 13.00 5045
White 0.77 0.42 1.00 0.00 1.00 5045
Black 0.07 0.26 0.00 0.00 1.00 5045
Hispanic 0.05 0.21 0.00 0.00 1.00 5045
Asian 0.08 0.27 0.00 0.00 1.00 5045
Full-time employment 0.51 0.50 1.00 0.00 1.00 5045
Part-time employment 0.11 0.32 0.00 0.00 1.00 5045
Unemployed 0.13 0.34 0.00 0.00 1.00 5045
Bachelor Degree 0.37 0.48 0.00 0.00 1.00 5045
Conservative 0.26 0.44 0.00 0.00 1.00 5019
Number of HITs 8966.40 15468.91 2500.00 750.00 75000.00 5045

Note: This table summarizes the main covariates of all respondents in experiment 5.

Table D14—Summary Statistics: Experiment 6 (Effort Experiment: Weak demand)

Mean SD Median Min. Max. Obs.

Male 0.55 0.50 1.00 0.00 1.00 769
Income 32425.23 16975.09 35000.00 5000.00 85000.00 769
Age 37.44 11.73 35.00 21.00 70.00 769
Household Size 3.71 1.46 3.00 2.00 10.00 769
White 0.74 0.44 1.00 0.00 1.00 769
Black 0.08 0.28 0.00 0.00 1.00 769
Hispanic 0.06 0.24 0.00 0.00 1.00 769
Asian 0.08 0.27 0.00 0.00 1.00 769
Full-time employment 0.54 0.50 1.00 0.00 1.00 769
Part-time employment 0.11 0.31 0.00 0.00 1.00 769
Unemployed 0.12 0.33 0.00 0.00 1.00 769
Bachelor Degree 0.41 0.49 0.00 0.00 1.00 769
Conservative 0.30 0.46 0.00 0.00 1.00 764

Note: This table summarizes the main covariates of all respondents in experiment 6.
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Table D15—Summary Statistics: Experiment 7 (Within Design)

Mean SD Median Min. Max. Obs.

Male 0.58 0.49 1.00 0.00 1.00 999
Income 54081.05 25778.96 55000.00 5000.00 100000.00 876
Age 34.45 10.73 31.00 19.00 83.00 999
Household Size 3.54 1.39 3.00 2.00 13.00 999
White 0.74 0.44 1.00 0.00 1.00 999
Black 0.08 0.27 0.00 0.00 1.00 999
Hispanic 0.06 0.23 0.00 0.00 1.00 999
Asian 0.10 0.30 0.00 0.00 1.00 999
Full-time employment 0.54 0.50 1.00 0.00 1.00 999
Part-time employment 0.11 0.32 0.00 0.00 1.00 999
Unemployed 0.13 0.34 0.00 0.00 1.00 999
Bachelor Degree 0.40 0.49 0.00 0.00 1.00 999
Conservative 0.24 0.43 0.00 0.00 1.00 994

Note: This table summarizes the main covariates of all respondents in experiment 7.
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Table D16—Attrition overview by task in the strong demand experiments

Finished: Finished: Finished: Ambiguity Finished: Effort Finished: Effort Finished: Finished: Dictator Finished: Ult. Finished: Ult. Finished: Trust Finished: Trust
Time Risk Aversion 0 cent bonus 1 cent bonus Lying Game Game 1 Game 2 Game 1 Game 2

Panel A: Unconditional Means

Positive demand 1.000 1.000 0.995 0.972 0.968 0.995 1.000 1.000 0.995 0.990 1.000
(0.000) (0.000) (0.005) (0.010) (0.011) (0.005) (0.000) (0.000) (0.005) (0.007) (0.000)

No demand 0.996 1.000 0.941 0.980 1.000
(0.004) (0.000) (0.015) (0.009) (0.000)

Negative demand 0.992 0.996 1.000 0.984 0.970 1.000 0.996 1.000 0.990 1.000 1.000
(0.006) (0.004) (0.000) (0.008) (0.011) (0.000) (0.004) (0.000) (0.007) (0.000) (0.000)

Panel B: Differential attrition

Positive - Negative 0.008 0.004 -0.005 -0.012 -0.002 -0.005 0.004 0.005 -0.010 0.000
(0.006) (0.004) (0.005) (0.013) (0.016) (0.005) (0.004) (0.008) (0.007) (0.000)

Positive - Neutral 0.004 0.031 -0.012
(0.004) (0.018) (0.014)

Negative - Neutral -0.004 -0.004 0.043 -0.009 -0.004
(0.007) (0.004) (0.017) (0.014) (0.004)

Observations 730 729 405 757 734 366 771 409 424 384 371

Note: In Panel A we present the proportion of respondents who completed the experiment in the positive, negative and no-demand treatment arms
respectively. In Panel B we assess whether there was differential attrition across treatment arms by examining differences in completion rates across
demand treatment arms.
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Table D17—Attrition overview by task in the weak demand experiments

Finished: Finished: Finished: Ambiguity Finished: Effort Finished: Effort Finished: Finished: Dictator Finished: Ult. Finished: Ult. Finished: Trust Finished: Trust
Time Risk Aversion 0 cent bonus 1 cent bonus Lying Game Game 1 Game 2 Game 1 Game 2

Panel A: Unconditional Means

Positive demand 0.995 1.000 0.990 0.955 0.941 0.995 0.996 1.000 1.000 1.000 1.000
(0.005) (0.000) (0.007) (0.015) (0.017) (0.005) (0.004) (0.000) (0.000) (0.000) (0.000)

No demand 0.993 0.992
(0.005) (0.006)

Negative demand 0.991 0.992 0.995 0.965 0.960 1.000 0.993 0.995 1.000 1.000 0.985
(0.007) (0.006) (0.005) (0.013) (0.014) (0.000) (0.005) (0.005) (0.000) (0.000) (0.009)

Panel B: Differential attrition

Positive - Negative 0.004 0.008 -0.005 -0.010 -0.019 -0.005 0.004 0.005 0.000 0.015
(0.008) (0.006) (0.009) (0.019) (0.022) (0.005) (0.007) (0.005) (0.000) (0.009)

Positive - Neutral 0.007 0.004
(0.005) (0.007)

Negative - Neutral -0.001 0.001
(0.008) (0.008)

Observations 425 743 393 404 401 413 763 361 411 352 349

Note: In Panel A we present the proportion of respondents who completed the experiment in the positive, negative and no-demand treatment arms
respectively. In Panel B we assess whether there was differential attrition across treatment arms by examining differences in completion rates across
demand treatment arms.
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E. Citations for Experimental Tasks

Our respondents complete one of the following tasks: a dictator game (Kahne-
man, Knetsch and Thaler, 1986); a risky investment game (Gneezy and Potters,
1997), without or with ambiguity; a convex time budget task (Andreoni and
Sprenger, 2012); a trust game (first or second mover, Berg, Dickhaut and Mc-
Cabe, 1995); an ultimatum game (first or second mover, Güth, Schmittberger
and Schwarze, 1982); a lying game (Fischbacher and Föllmi-Heusi, 2013); and a
real effort task with or without performance pay (DellaVigna and Pope, 2017,
DellaVigna and Pope, 2018).

*
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Fischbacher, Urs, and Franziska Föllmi-Heusi. 2013. “Lies in Disguise—an
Experimental Study on Cheating.” Journal of the European Economic Associ-
ation, 11(3): 525–547.

Gneezy, Uri, and Jan Potters. 1997. “An Experiment on Risk Taking and
Evaluation Periods.” The Quarterly Journal of Economics, 631–645.
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