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Abstract

Simple decisions can reveal two layers of preference. Suppose a hiring manager always
chooses a woman over an identically-qualified man, but always chooses a man over
a woman with different qualifications. Intuitively, these choices reveal an explicit
preference for women, but an implicit preference for men. We define an implicit
preference for an attribute as one whose influence increases whenever that attribute
is mixed with others (“dilution”). We prove two representation theorems, and provide
three two-layer decision-making models that exhibit implicit preferences. We give
extensive guidance for applications, and present evidence of implicit risk preferences,
implicit selfishness, and implicit discrimination.
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“However we may conceal our passions under the veil, there is always some
place where they peep out” - La Rochefoucauld.

Inconsistencies in decision making are often described as arising from a conflict between
opposing motives. We a formalize a common intuition about how motives interact and fully
characterize its testable implications. Our theory is consistent with a variety of psychological
foundations for the underlying conflict, and easy to apply empirically.

Suppose you observe a hiring manager’s choices within pairs of job applicants, a woman
and a man, each of whom has either an MBA or a PhD. You notice that:

1. They choose the woman when the candidates’ qualifications are the same,

2. They choose the man when the candidates’ qualifications differ.

Using A ≻ B to represent the choice of A from {A,B}, we can visualize these choices:

MBA PhD

Female

Male

The choices are intransitive and therefore inconsistent with standard utility maximization.
Nevertheless they form an intuitive “figure 8” pattern, suggesting two distinct attitudes
towards gender: favoring women when the candidates differ only in gender, but favoring
men when the candidates additionally differ in other respects.

We study preferences over bundles of binary attributes (Male/Female, Black/White,
Aisle/Window). The utility of consuming a given bundle has an explicit component that
is independent of context, and an implicit component, whose strength of influence varies
with context. Our core assumption is dilution: the influence of an implicit preference for
an attribute increases in comparisons that mix that attribute with more other attributes, in
a superset sense. Thus our hiring manager explicitly prefers women, but implicitly prefers
men. The diagonal choice sets mix gender with qualification, increasing the influence of their
implicit gender preference, causing the intransitivity.

The example covers binary choice between bundles, but our theory also applies to evalu-
ations such as consumers’ willingness to pay, teachers’ grading, or judges’ sentencing, when
each evaluation invokes a comparison. Suppose the manager is setting wages for a pair of
new hires, one male and the other female. Our theory says that their implicit preference for
men will make the man’s wage sensitive to the woman’s attributes. So we would predict that
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a male candidate would tend to be assigned a lower wage when he is compared to a woman
with the same qualification, than when compared to a woman with a different qualification.1

Section 1 presents our main theoretical results, which are a pair of representation theo-
rems. Theorem 1 is an application of a Theorem of the Alternative: a representation exists if
and only if there is no weighted combination of (1) utility inequalities, from observed behav-
ior; and (2) inequalities on the influence of implicit preferences, from the theory, such that
the coefficients on each term sum to zero.2 Theorem 2 shows that existence of this weighted
combination is equivalent to existence of a matching between choices or evaluations. The
core intuition is this: we can rule out that the manager implicitly prefers men over women
if observed choices include an intransitive cycle, within which every instance where a man is
chosen over a woman can be matched to an instance where a woman is chosen over a man
in a more dilute choice set.3

The theorems are stated in abstract terms so that they will be applicable to a broad
range of data. Section 2 provides a set of “canonical” examples, e.g. showing that our “figure
8” example reveals an implicit preference favoring men. We describe several other intuitive
patterns in choice (“right triangle,” “parallel triangles,” “square”) and in evaluation (“scissor,”
“parallel scissor”), each of which has distinct implications about implicit preferences.

We claimed above that our theory captures a common intuition. Section 3 demonstrates
this by introducing three simple decision-making models, or “foundations,” inspired by three
separate literatures. In each model, decision makers can possess two distinct attitudes to-
wards each attribute. Each model is nested by our more general model, meaning the two
layers of attitude can be identified using our proposed tests.

First we consider a “ceteris paribus” decision maker who is subject to a set of rules that
apply in “all else equal” situations. This model relates to models in which the decision
maker chooses from a subset of elements that are maximal by some other set of rankings
(e.g. Manzini and Mariotti (2007, 2012); Masatlioglu et al. (2012); Cherepanov et al. (2013);
Ridout (2021)). In this model the figure 8 cycle described above reveals that the hiring
manager prefers men, but faces a rule demanding choosing a woman over an equally-qualified
man. Diluting the gender attribute disables the rule.

1Some of our evaluation applications use an additional assumption, dominance from attribute k. It says
that an implicit preference has more influence when its attribute is mixed with a special attribute “k,” which
we usually think of as capturing everything the bundles have in common. Then, implicit gender preferences
have more influence when comparing two men than when comparing a man to a woman.

2As a referee suggests, this theorem is related to the “cancellation” condition that characterizes additive
utility functions (Fishburn, 1970; Wakker, 1989).

3The full statement of the theorem is more abstract. It (1) allows for implicit preferences on arbitrarily
many attributes, and behavioral data containing multiple cycles; (2) applies to choice and evaluation; and
(3) holds for a general class of assumptions about the influence of implicit preferences.
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Second, we study a signaling decision maker who has intrinsic preferences over each
attribute but also cares about others’ perceptions of those preferences. This model relates to
work on signaling and self-signaling, excuse-driven behavior, and “moral wiggle room” (e.g.
Bodner and Prelec (2003); Benabou and Tirole (2003, 2006); Norton et al. (2004); Dana et al.
(2006, 2007); Andreoni and Bernheim (2009); Exley (2016a); Bursztyn et al. (2023)). The
figure 8 reveals a sincere preference favoring men, but a signaling motive to favor women.
Diluting gender adds noise to the observer’s inferences, weakening the signaling motive.

Third, we model an implicit associations decision maker for whom some knowledge is
tacit. The model is based on Cunningham (2016) and relates to psychological theories of
implicit bias and unconscious judgment (e.g. Devine (1989); Greenwald and Krieger (2006);
Greenwald et al. (1998); Kahneman (2011); Rand et al. (2012)). In this model the hiring
manager is composed of two rational agents, each with private information. Agent 1, the
pre-conscious brain, associates men with high value; it has a “good feeling” about the male
candidate. Agent 2, the conscious brain, believes gender-based associations are irrelevant
and tries to overrule their influence. Diluting the gender attribute makes it harder for the
conscious brain to diagnose and adjust for the source of the “good feeling.”

Next we turn to applications. Section 4 gives guidance for using the theory in practice,
combined with web Appendix A.2 that provides a “cookbook” of easy-to-use tests. Section 5
applies the theory to three pre-existing datasets. We find evidence of implicit selfishness and
implicit risk attitudes in choice data from Exley (2016a) and Ahumada et al. (2022), and
implicit racial bias in evaluation data from DeSante (2013a). A simple structural estimation
suggests that implicit racial bias shifts average financial allocations by at least 12%.

Finally Section 6 discusses related theories, and explains where our predictions differ
from theirs, as well as where there is overlap.

In psychology the term “implicit” applies to attitudes, cognition, judgments, preferences,
or knowledge “outside conscious attentional focus” (Devine, 1989; Greenwald and Krieger,
2006), often described as “automatic,” “unconscious,” “associative.” In dual-process theories
(e.g., Kahneman (2011)) they are associated with “System 1.” Meanwhile, explicit attitudes
are those that are stated or revealed deliberately. Psychologists have developed numerous
non-choice techniques for identifying implicit attitudes, most notably the Implicit Association
Test (IAT) (Greenwald et al., 1998), which is based on variation in response time between
different stimuli. IATs have been widely adopted, including within economics (Rooth, 2010;
Reuben et al., 2014; Glover et al., 2017; Alesina et al., 2018; Carlana, 2019; Corno et al.,
2022), but their interpretation remains controversial (Oswald et al., 2013; Greenwald et al.,
2015). A weakness of operationalizing implicit preferences with non-choice data is that
their economic significance is unclear. In contrast our definition of implicit preferences is
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behavioral, so the link to economic outcomes is immediate.

Temptation Embarrassment Prejudice

Coke Pepsi

Diet

Regular

Magazine A Magazine B

Athletes
Issue

Swimsuit
Issue

Movie A Movie B

Sit with
disabled

Sit with
able-

bodied

Selfishness Framing Discounting

Cash Lottery

Charity

Self

Prospect A Prospect B

Frame Y

Frame X

∼ ∼

Pen Chocolate

Sooner

Later+$2

Temptation. The decision maker chooses between diet and full-sugar sodas. They explicitly prefer diet
soda, but reveal an implicit preference for the sugary option.
Embarrassment. The decision maker chooses between magazines, which may have a swimsuit issue or
a special issue covering famous athletes. They explicitly prefer the athletes issue but reveal an implicit
preference for the swimsuit issue. (Inspired by Chance and Norton (2009)).
Prejudice. The decision maker chooses between movies, which will be watched with an able-bodied or a
disabled person. They explicitly prefer to sit with the disabled person, but reveal an implicit preference for
sitting with the able-bodied person. (Inspired by Snyder et al. (1979)).
Selfishness. The decision maker chooses between a lottery or a cash amount, each benefiting themself or
charity. They explicitly prefer to give to charity, but reveal implicit selfishness. (Inspired by Exley (2016a)).
Framing. The decision maker chooses between prospects (A and B) framed in different ways (X and Y).
They are indifferent between differently-framed versions of the same prospect, but strictly prefer frame X
when the prospects differ. This reveals an implicit preference for frame X, but no explicit preference.
Discounting The decision maker chooses between a pen or a box of chocolates, either now, or with a
financially-compensated delay. They reveal an explicit preference for sooner rewards, but an implicit prefer-
ence for the delay. (This summarizes the findings in Cubitt et al. (2018)).

Figure 1: Figure 8 intransitivities applied to various domains.

Numerous empirical studies share the intuition that underlying motives are revealed when
comparisons vary in directness or transparency; we formalize this intuition and provide
broadly-applicable tests. Most study discrimination: on disability (Snyder et al., 1979);
gender (Norton et al., 2004; Uhlmann and Cohen, 2005; Bohnet et al., 2016); race (Hodson
et al., 2002); and bodyweight (Caruso et al., 2009). Exley (2016a) studies excuse-driven
selfishness, while Cubitt et al. (2018) study patience. The most closely related paper is
Barron et al. (2022)’s lab hiring experiment on gender discrimination. Participants chose
between candidates who varied in gender and a skill certification. They find evidence of
implicit gender bias, applying a “right triangle” test based on our theory.

Our introductory example shows how we can identify implicit gender discrimination, a
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topic of great recent interest.4 But there are many other contexts in which we might expect
two layers of preference. Figure 1 shows six different figure 8 cycles across a range of domains,
illustrating implicit preferences we might expect to observe.

1 Model

Overview. Preferences will exist over bundles of n binary attributes: x ∈ X = {−1, 1}n,
e.g. male/female, aisle/window, sugar/sweetener, sooner/later, risky/safe.5,6 As a working
example we will let attribute 1 be qualification, with x1 = −1 for MBAs and x1 = +1 for
PhDs, and attribute 2 be gender, with x2 = −1 for Female and x2 = +1 for Male.

The utility function will be comparison dependent, taking the form u(x, z), where x

is the bundle being consumed (the target) and z is a second comparator bundle, to which
x is being compared. We express observable data on decision making as inequalities, e.g.
u(x, z) > u(x′, z′). This formalism allows us to represent data from both binary choice and
joint evaluation decisions in a common framework.7

We assume a decision maker’s implicit preference for attribute i is either negative, neu-
tral, or positive, κi ∈ {−1, 0,+1}. Thus κ2 = +1 denotes an implicit preference favoring
men (equivalently, disfavoring women). We assume that the influence of implicit preferences
depends on the relationship between target and comparator, specifically on the sets of at-
tributes that are shared and non-shared between x and z. These are encoded in the vector
δ ≡ |x − z|, which we call the comparison. Thus if x = [ 11 ] and z = [ 1

−1 ] then δ = [ 02 ].
We sometimes talk about the status of an attribute in a given comparison δ, this refers to
whether it is shared (δi = 0) or non-shared (δi = 2).

4Bertrand et al. (2005) and Bertrand and Duflo (2017) discuss the economic importance of implicit
discrimination, and the difficulty of measuring it. They mention that implicit discrimination will be more
pronounced in more “ambiguous” situations: our paper can be seen as formalizing this notion.

The economics literature distinguishes between taste-based (Becker, 1957) and statistical (Phelps, 1972;
Arrow, 1973) discrimination (possibly inaccurate: Bohren et al. (2023)). Either type can be implicit. Bohren
et al. (2022) analyze direct and systemic discrimination. Direct discrimination early in a woman’s career
contributes to systemic discrimination later, as her resume ends up weaker than an equally-able man’s.
Implicit discrimination is a form of direct discrimination, and can be amplified by systemic effects.

5This follows the Lancaster (1966) “characteristics” approach, in which the analyst must a priori map
outcomes into some attribute-space. However this is unavoidable if we wish to study preferences over
attributes such as gender, educational qualification, or salt content. Our attributes do not need to be
intrinsically binary, but should take no more than two values in the dataset.

6We write vectors with a bold font, and xT will refer to the transpose of x. Absolute values of vectors
will be element-wise: |x| =

[
|x1| . . . |xn|

]T . Inequalities between vectors will be defined as: x ≥ z ⇔
xi ≥ zi ∀i; x > z ⇔ xi ≥ zi ∀i,x ̸= z; and x ≫ z ⇔ xi > zi ∀i = 1.

7Chambers and Echenique (2016) give a textbook discussion of decision theory as analysis of sets of
inequalities, however we do not know of other papers that treat both choice and evaluation inequalities in a
common framework, as we do here.
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We allow the comparison-independent component of utility to be nonseparable, meaning
there can be arbitrary patterns of complementarity among attributes. However we require
the effects of comparison δ on utility to be additively separable. We believe this is a natural
way to think about implicit preferences, as applying to attributes rather than combinations
of attributes, and gives rise to sharp testable predictions. We provide below a necessary and
sufficient condition on observable behavior for this separability to hold.

We will make two substantive assumptions on the direction of implicit influences. First,
dilution: that the implicit influence of attribute i increases when the set of other attributes
with the same status as i grows, in a superset sense. Thus, implicit preferences over gender
are assumed to have more influence in choice between a man and a woman when the man and
woman have different qualifications than when they have the same qualifications. Section 3
will show that this dilution property is common to several decision-making models in which
there exists an interaction between two “layers” of preferences or information.

Our second assumption, dominance from attribute k, (“dominance-k” for short) says that
attribute i’s implicit influence will always be greater when i has the same status as a specific
attribute k. Thus if k is shared, i’s influence is greater when i is also shared, and vice
versa. This assumption has no testable implications for choice but there are applications in
evaluation. Section 3.4 discusses its interpretation in each foundation model.

Both assumptions share a similar intuition: dilution is about mixing attribute i with a
larger set of other attributes, while dominance-k is about mixing i with a single important
attribute. In both cases the influence of i’s implicit preference increases.

We derive two theorems, each is a different way of expressing conditions under which a set
of choice or evaluation observations (a dataset) is consistent with a given vector of implicit
preferences κ. Theorem 1 is an application of a Theorem of the Alternative to our problem: a
representation exists if and only if there is no weighted combination of (1) utility inequalities
from the dataset, and (2) influence inequalities from the dilution/dominance-k assumptions,
such that the coefficients on each term sum to zero. Theorem 2 shows that consistency can
be expressed with a matching condition. Specifically, a representation exists if and only if
the dataset does not contain a subset of inequalities which (1) consists of intransitive cycles
among target bundles, and (2) for each attribute i and comparison δ there exists a particular
1:1 matching between the inequalities that satisfies the influence assumptions.

The two theorems express the same condition but in different ways. The first is more
suited to numerical or algorithmic verification of feasibility, while the second yields crisp and
intuitive answers to questions about what implicit preferences are revealed by a given set
of choices, and what choices are inconsistent with the model. Section 1.2 shows that our
theorems carry over to a variety of extensions of the basic model.
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If we are willing to assume that decision maker has implicit preferences over only a single
attribute, e.g. only over gender, then the testable predictions become much simpler. However
we often wish to deal with decision makers who may have implicit preferences over multiple
attributes, so it is necessary to have the full characterization.

In what follows we will operate at a slightly higher plane of abstraction: we define a partial
order over comparisons, ⊒i, called influence-dominance, which ranks comparisons according
to the strength of influence of attribute i’s implicit preference.We prove our theorems for any
influence-dominance relation. Dilution and dominance-k correspond to specific assumptions
on {⊒i}ni=1. Section 1.2 discusses how we can incorporate extensions to the model, via
alternative or additional assumptions on influence dominance.

Setup. A bundle is a vector of n binary attributes, x ∈ X = {−1, 1}n. A comparative
utility function, u(x, z), is a function u : X × X → R. We call the first argument x the
“target” and the second argument z the “comparator”.

We encode all data on decision making as a set of inequalities:

Definition 1 (Dataset). A dataset D is a set of m 4-tuples, (xj, zj,x′j, z′j)mj=1, with
xj, zj,x′j, z′j ∈ X .

Definition 2 (Consistency). A dataset D is consistent with a comparative utility function
u : X × X → R if, for every j ∈ {1, . . . ,m}:

u(xj, zj) > u(x′j, z′j) , 1 ≤ j ≤ m̄ (strict inequalities)

u(xj, zj) ≥ u(x′j, z′j) , m̄ < j ≤ m (weak inequalities).

This formalization lets us capture two different types of comparative decision making:
binary choice and joint evaluation. Under binary choice a strict revealed preference x ≻ z

reveals u(x, z) > u(z,x), a weak preference reveals a weak inequality, u(x, z) ≥ u(z,x),
and indifference reveals two weak inequalities u(x, z) ≥ u(z,x) and u(x, z) ≤ u(z,x).8

Joint evaluation describes situations in which the decision maker states an evaluation,
e.g., willingness to pay, for each of two bundles presented side-by-side. We write the eval-
uations as y(x, z) and y(z,x). We assume that the evaluation y is a strictly increasing
function of utility, y(x, z) = g(u(x, z)). Because we do not know the function g(·), testable
implications come just from inequalities. Notably some types of inequality can be observed
in joint evaluation data, but not choice data, e.g. we can observe that the same target bundle
receives different evaluations given different comparators, u(x, z) ≶ u(x, z′). To construct a

8For example, the choices x ≻ x′ ≻ x′′ ∼ x correspond to a dataset with m = 4, m̄ = 2: u(x,x′) >
u(x′,x); u(x′,x′′) > u(x′′,x′); u(x′′,x) ≥ u(x,x′′); and u(x,x′′) ≥ u(x′′,x).

7



dataset from joint evaluation we first rank all observed evaluations, then enter an inequality
into the dataset for each pair of consecutive evaluations. A perfect equality between two
evaluations can be represented by a pair of weak inequalities.9

We will repeatedly use a certain type of weighted subset of the dataset, which we call
a “cyclical selection.” We show below that a dataset is inconsistent with a comparison-
independent utility function u(x) if and only if it contains a cyclical selection, and the
existence of cyclical selections will appear in our theorems.

Definition 3 (Cyclical Selection). Given a dataset D = {xj, zj,x′j, z′j}mj=1 a cyclical se-
lection is a vector of non-negative integer weights s ∈ Nm over elements of the dataset such
that each target bundle appears equally often on the left- and right-hand sides. I.e., for every
x ∈ X ,

m∑
j=1

sj1{x = xj}︸ ︷︷ ︸
appearances of x on LHS

=
m∑
j=1

sj1{x = x′j},︸ ︷︷ ︸
appearances of x on RHS

with sj > 0 for at least one j ∈ {0, . . . , m̄} (i.e., at least one strict inequality).

If the dataset is derived from choice data then, because every target bundle appears equally
often on the left- and right-hand sides, a cyclical selection s must be composed of intransitive
cycles among the bundles, e.g. x ≻ x′ ⪰ x′′ ≻ x.10 An example of a cyclical selection from
joint evaluation is a single inequality of the form u(x, z) > u(x, z′), i.e. where the same
target bundle receives a different evaluation when the comparator changes.

Separable implicit preferences. We now introduce an explicit structure on preferences.

Definition 4. A separable comparative utility function has the form:

uI(x, z) = f
(explicit value︷︸︸︷
v(x) +

implicit value︷ ︸︸ ︷
n∑

i=1

xi κi︸︷︷︸
implicit
pref for i

θi(|x− z|)︸ ︷︷ ︸
influence

of i

)
, (1)

with v : X → R, κi ∈ {−1, 0, 1}, θi : {0, 2}n → R+, f : R → R and strictly increasing.
9For example, the evaluations y(x,x′) = $310, y(x′,x) = $200, y(x,x′′) = $200, y(x′′,x) = $150

correspond to a dataset with m = 4, m̄ = 2: u(x,x′) > u(x′,x); u(x′,x) ≥ u(x,x′′); u(x,x′′) ≥ u(x′,x);
u(x,x′′) > u(x′′,x).

10By Euler’s theorem on directed multigraphs (Jungnickel (2005), p27): if each vertex has the same
indegree and outdegree then the edges can be decomposed into directed cycles. Some of these cycles may be
composed entirely of weak inequalities, but by our definition at least one must have a strict inequality, and
so is an intransitive cycle. Put another way: existence of a cyclical selection is equivalent to violation of the
Strong Axiom of Revealed Preferences.
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Utility depends on the sum of the explicit value of bundle x, and the implicit values from
each of the n attributes. Attribute i’s contribution to implicit value depends on (1) the
decision maker’s implicit preference for that attribute, κi; and (2) that attribute’s influence,
θi(|x− z|). The outer function f is strictly increasing.

The substantive assumption expressed in this formalism is that implicit preferences affect
each attribute separately, e.g. decision makers can have implicit preferences over gender and
implicit preferences over race but they do not interact. Put another way, we allow for
arbitrary patterns of complementarity between attributes, but we assume that changes to
the comparison will not change that complementarity: if attribute i and j are complements
under δ then implicit preferences cannot cause them to be substitutes under δ′.

Proposition 1 gives an exact statement of conditions for (1) to be consistent with a
dataset. We will show below that this proposition follows as a corollary of Theorem 1.

Proposition 1 (Cancellation). A dataset D is consistent with some separable comparative
utility function if and only if there exists no cyclical selection s such that for every i ∈
{1, . . . , n} and δ ∈ {0, 2}n, ∑

j:|xj−zj |=δ

sjx
j
i︸ ︷︷ ︸

inequalities with δj = δ

=
∑

j:|x′j−z′j |=δ

sjx
′j
i .︸ ︷︷ ︸

inequalities with δ′j = δ

Thus separability will be falsified if the dataset contains a cyclical selection (an intransitive
cycle or set of cycles), in which for each (i, δ) pair, every left-hand side appearance of xi = 1 is
“canceled” by a right-hand side appearance of xi = 1 or a left-hand side appearance of xi = −1

(and vice versa). The condition can be seen as a version of the standard “cancellation”
condition for separability of a utility function over a discrete multiattribute space (Fishburn,
1970).11 That condition says that each realization of each attribute must appear “equally
often to the left of the preferences ... as to the right of the preferences.” (Wakker, 1989). Our
condition differs in (a) additionally requiring that the selection constitutes a cyclical selection;
(b) aggregating cancellations over attribute-comparison pairs (i, δ) instead of over attributes
(i), and (c) incorporating symmetry between positive and negative attribute values.

In the 2-attribute case our assumption rules out the “square” cycle shown in Figure 2. It
can be seen that our cancellation condition is violated because: (a) the choices form a cycle;
(b) for each δ and i each realization of i is equally-often preferred and dispreferred.

In this cycle the complementarity between gender and qualification reverses: under δ

11We are grateful to a referee for pointing out this connection to us.
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δ = [ 20 ] δ′ = [ 02 ]

MBA PhD

Female

Male

MBA PhD

Female

Male

MBA PhD

Female

Male

(a) Square cycle (b) Individual comparisons

Figure 2: Example dataset (“square cycle”) that violates the condition of Proposition 1.

Males and PhDs are complements, while under δ′ they are substitutes.12 This reversal of
complementarity is ruled out by our separable utility function, and we believe this restriction
is a desirable property of an attribute-wise theory of implicit preferences: implicit preferences
for attributes should change the relative value of different attributes, but not their patterns
of complementarity. In addition a theory which allowed for changes in complementarity
would have fewer testable predictions, e.g. it would not rule out the square cycle and it is
unclear whether there are any patterns of choice which could falsify such a theory.

Influence dominance. Proposition (1) allows us to test the separability of implicit influ-
ences but cannot be used to identify the direction of implicit preferences. For that we need
substantive assumptions on how comparisons affect the strength of implicit preferences, i.e.
how δ affects θi. We express these assumptions somewhat abstractly, by defining a binary
relation over the space of comparisons. The advantage of the abstraction is that our results
will be modular, holding for any assumptions on influence that can be expressed in this way.

Definition 5 (Influence-dominance). An influence-dominance relation is a partial order over
the set of comparisons ∆ ≡ {0, 2}n.

We will use influence-dominance relations to express assumptions on an influence function
θi(·). We will say that θi obeys influence-dominance relation ⊒i if for all δ, δ′ ∈ {0, 2}n,

δ ⊒i δ
′ =⇒ θi(δ) ≥ θi(δ

′).

In words, if comparison δ influence-dominates δ′ with respect to attribute i (δ ⊒i δ
′), then

the influence of i’s implicit preference is greater under δ than δ′ (θi(δ) ≥ θi(δ
′)).

12Abusing notation to write u(x, δ) instead of u(x, z), we observe the following:(
u([ 11 ] , δ)− u(

[−1
1

]
, δ)

)
−
(
u(
[

1
−1

]
, δ)− u(

[−1
−1

]
, δ)

)
> 0 (complements under δ)(

u([ 11 ] , δ
′)− u(

[−1
1

]
, δ′)

)
−
(
u(
[

1
−1

]
, δ′)− u(

[−1
−1

]
, δ′)

)
< 0 (substitutes under δ′).
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Our representation theorems are stated given any arbitrary set of relations {⊒i}ni=1.
However our applications will use two specific assumptions on each ⊒i, both based on the
“foundations” in Section 3. We present those in Section 1.1 below.

We can now define what it means for a dataset to be consistent with maximization of an
implicit preferences utility function:

Definition 6 (Implicit Rationalization by κ). We say a dataset D has an implicit ratio-
nalization by κ ∈ {−1, 0, 1}n if and only if it there exists a rationalization by a separable
comparative utility function u(·, ·), with implicit preferences κ, and with θ(·) obeying the
influence-dominance relations, {⊒i}ni=1.

Our first theorem gives a necessary and sufficient condition for implicit rationalization by κ.

Theorem 1 (Rationalization by Vector). Given influence-dominance relations {⊒i}ni=1, a
dataset D has an implicit rationalization by κ ∈ {−1, 0, 1}n if and only if there do not exist
vectors p ∈ Nm, with pj > 0 for some j ≤ m̄, and q ∈ Nn2n2n, such that ∀x ∈ X:∑

j:{xj=x}︸ ︷︷ ︸
appearances of x

on LHS

pj =
∑

j:{x̄j=x}︸ ︷︷ ︸
appearances of x

on RHS

pj,

and ∀i ∈ {1, . . . , n}, δ ∈ {0, 2}n,∑
j:|xj−zj |=δ︸ ︷︷ ︸

inequalities with
δ on LHS

pjx
j
iκi −

∑
j:|x′j−z′j |=δ︸ ︷︷ ︸

inequalities with
δ on RHS

pjx
′j
i κi +

∑
δ̄′:δ⊒iδ̄′︸ ︷︷ ︸

comparisons
dominated by δ

qiδδ̄′ −
∑

δ̄:δ̄⊒iδ︸ ︷︷ ︸
comparisons
dominating δ

qiδ̄δ = 0.

The condition comes from writing the assumptions as a system of inequalities, and then
applying a Theorem of the Alternative to that system. The first expression is exactly the
definition of a cyclical selection: i.e. there must exist some weighted subset of the dataset
such that each bundle appears equally-often on the left-hand side and the right-hand side.

The second expression is more complicated to interpret. Loosely speaking it requires
that the decision maker consistently chooses bundles with implicitly-preferred attributes in
comparisons in which implicit preferences have weaker influence.

We can interpret each of the two pairs of terms in the second condition as “flows.” The
first pair of terms represents the positive and negative preferences for attribute i under
comparison δ expressed across the cyclical selection p, and so their sum represents the excess
preference for attribute i under comparison δ, which can be either positive or negative. By
itself this is basically a “cancellation” condition (Fishburn, 1970; Wakker, 1989). The second
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two terms represent inflows and outflows between pairs of comparisons which satisfy influence
dominance. For each δ outflow is to the set of comparisons dominated by δ, the inflow is
the comparisons dominated by δ. Thus the condition as a whole says that there exists some
“flow” between pairs of comparisons which exactly balance. The next section introduces a
matching formalism which we believe is a much more intuitive, but equivalent, condition.

The full proof is in Section 8. The proof first rewrites the dataset and the influence-
dominance relations as a system of inequalities in matrix form. Rationalizability requires
there exist vectors of explicit values v, and influences θ, that solve the system. Applying
Motzkin’s Rational Transposition Theorem (Border, 2013) tells us that a solution exists if
and only if there is no weighting of the rows in the matrix that sums to zero, which gives us
the two conditions above, i.e. the existence of vectors p and q.

Proposition 1 follows directly from Theorem 1, with s substituted for p, where we let
the set of influence-dominance relations {⊒i}ni=1 be empty (equivalently, set q = 0). Then,
the second two terms in the second condition drop out, as do the κi’s. Intuitively, if q = 0,
implying no restrictions from influence dominance, any κ can rationalize D unless the excess
preference for every attribute equals exactly zero.

Matching. We next establish that rationalization can be expressed as a matching condi-
tion. The matching condition is logically equivalent to the vector condition of Theorem 1
but is easier to interpret and to verify in routine cases. Heuristically, the matching condition
verifies that bundles that are implicitly preferred are not systematically ranked higher in
comparisons in which the influence of implicit preferences is lower.13

First, we define what is being matched. We define a “score” for each attribute i and each
comparison δ ∈ {0, 2}n, which measures how frequently the positive value of that attribute
“wins,” in the sense that xi = 1 appears on the left-hand side of an inequality or xi = −1

appears on the right-hand side, relative to how many times it “loses” (the converse).

Definition 7 (Score). Given a dataset D = {xj, zj, x′j, z′j}mj=1 and a cyclical selection s ∈
Nm, the score is a vector c ∈ Zn{0,2}n, with one element for each i ∈ {1, . . . , n} and each
δ ∈ {0, 2}n. Its elements equal:

ci,δ =
∑

j:|xj−zj |=δ

sjx
j
i︸ ︷︷ ︸

inequalities with δj = δ

−
∑

j:|x′j−z′j |=δ

sjx
′j
i .︸ ︷︷ ︸

inequalities with δ′j = δ

In a cyclical selection each bundle x ∈ {−1, 1}n necessarily appears equally often on the left-
and right-hand sides, so for each i the sum of scores across comparisons is zero:

∑
δ ci,δ = 0.

13We are not aware of other representation theorems in multiattribute utility that use matching conditions.
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Observe also that c = 0 is equivalent to the condition in Proposition 1.
We now define our matching. Roughly speaking, it asks whether increases in influence

are associated with more positive scores:

Definition 8 (influence-positive matching). Given a dataset D = {xj, zj, x′j, z′j}mj=1, a
cyclical selection s ∈ Nm, and an influence-dominance relation ⊒i, we say attribute i

has an influence-positive matching if there exists a matrix of non-negative integers
Mi ∈ N{0,2}n×{0,2}n with:

∀δ, δ′ ∈ {0, 2}n, (Mi,δ,δ′ > 0) =⇒ δ ⊒i δ
′ (matches obey dominance)

∀δ̄ ∈ {0, 2}n, ci,δ̄ =
∑

δ∈{0,2}n
Mi,δ̄,δ︸ ︷︷ ︸

outflow: δ̄ dominates

−
∑

δ′∈{0,2}n
Mi,δ′,δ̄︸ ︷︷ ︸

inflow: δ̄ dominated

(net flows are matched)

The first condition says that δ is only matched to δ′ under attribute i if δ influence-dominates
δ′ with respect to i. The second condition checks that all matchings add up: for every
comparison δ̄ the score ci,δ̄ > 0 is equal to the net matching flow from other comparisons,
i.e. the outflows minus the inflows. So, a positive score (attribute i wins more than it loses
for comparison δ) needs to have net outflows (δ needs to influence-dominate more than it is
influence-dominated). A negative score needs to have net inflows.

We likewise say that i has an influence-negative matching if there is an Mi that
satisfies the first condition (matches obey dominance) and the inverse of the second condition,
i.e. outflow minus inflow sums to −ci,δ̄. An attribute with all scores equal to zero trivially
has both kinds of matching. We can now state the matching result.

Theorem 2 (Rationalization by matching). Given influence-dominance relations {⊒i}ni=1,
a dataset D has an implicit rationalization by κ ∈ {−1, 0, 1}n if and only if there exists no
cyclical selection s such that, (1) every attribute with a positive implicit preference (κi = 1)
has an influence-negative matching, and (2) every attribute with a negative implicit preference
(κi = −1) has an influence-positive matching.

The full proof is in Section 8. The key point is to show that the existence of the row-
weighting vector q, from Theorem 1 is equivalent to the existence of a cyclical selection with
appropriate influence-negative and influence-positive matchings.

To apply the matching result one must (1) figure out the set of possible cyclical selec-
tions;14 (2) for each s, work through each attribute and ask whether it has an influence-

14For a single cycle one only needs to consider one, because s and λs (where λ is a positive integer) admit
equivalent matchings. When D contains multiple cycles there will be many possible cyclical selections, but
typically all empirical content will be contained in just a few of them.
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positive, influence-negative, or both kinds of matching (can I match comparisons in which x

is preferred, to comparisons in which x is dispreferred, with weakly higher/lower influence?)
Section 2 gives many worked examples. For simple datasets this can often be evaluated by
visual inspection. In more complex cases the search can sometimes be simplified by using
the matrix representation of the problem from Theorem 1.

Theorem 2 illuminates a useful fact that simplifies analysis of choice data: when looking
for matchings for attribute i we can ignore choices in which i is shared. This is because δ

is identical on the LHS and RHS of a choice inequality, and shared i implies xi = x′
i. As a

result, that choice contributes zero to ci,δ and will not affect whether it is possible to find
an influence-positive or influence-negative matching for i. Another way to see this is by
inspection of (1): the terms corresponding to implicit influences from shared attributes will
cancel out in any choice inequality u(x, z) > u(z,x).

The set of κ’s that could rationalize the dataset are those not ruled out our Theorems.
The next Corollaries follow immediately:

Corollary 1 (Representation). A dataset D has an Implicit Preferences Representation if
and only if there exists at least one κ ∈ {−1, 0, 1}n satisfying the conditions of Theorem 1/2.

Corollary 2 (Rationalization by standard preferences). A dataset D can be rationalized by
a standard utility function (i.e. κ = 0) if and only if it does not contain a cyclical selection.

Proof: if κ = 0 the matching condition is trivially satisfied for any cyclical selection. If a
dataset contains no cyclical selection it is rationalizable by any κ.

1.1 Assumptions on Influence Dominance

We now describe two assumptions on the influence-dominance relations, ⊒i.

Assumption 1 (Dilution). For all i ∈ {1, . . . , n}, δ, δ′ ∈ {0, 2}n:

(δi = δ′i)︸ ︷︷ ︸
i has same status

in comparisons δ and δ′

∧ {j : δj = δi} ⊇ {j : δ′j = δi}︸ ︷︷ ︸
a superset of attributes have the same status

as i in δ compared to δ′

=⇒ δ ⊒i δ
′︸ ︷︷ ︸

δ influence-dominates
δ′ with respect to i

Dilution says that the implicit preference on attribute i has more influence in comparisons
where i is more “mixed” with other attributes, in the sense that a superset of other attributes
have the same status as i (whether that status is shared or non-shared). For example, an
implicit preference favoring men will have a weak influence when x and z differ only on
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gender, becoming stronger as x and z differ on other attributes in addition to gender.15

Thus in our leading example in the Introduction, implicit gender preferences have more
influence in the diagonal choice sets than in the verticals, because the diagonals mix gender
with qualification (θ2 ([ 22 ]) ≥ θ2 ([ 02 ])).

Dilution is our most important assumption: it is sufficient for all our results on choice
and many results on evaluation. However in some evaluation applications there is a natural
second assumption, which we call “Dominance from attribute k” or “Dominance-k” for short.
It specifies a special attribute, k, such that attribute i’s influence increases when i has the
same status as k.16

Assumption 2 (Dominance from attribute k). For all i ∈ {1, . . . , n} \ k, δ, δ′ ∈ {0, 2}n,

(δi = δk) ∧ (δ′i ̸= δ′k)︸ ︷︷ ︸
i has same status as k in comparison δ

i has different status from k in comparison δ′

=⇒ δ ⊒i δ
′︸ ︷︷ ︸

δ influence-dominates
δ′ with respect to i

If k is a shared attribute, influence will be greater for other attributes i ̸= k when they are
also shared, and vice versa when k is non-shared.

For intuition consider a “signaling” situation where a decision maker wants to conceal
their gender bias. k represents an attribute whose importance is very uncertain from the
observer’s perspective. Then, if i has the same status as k it will be hard for the observer
to figure out which is driving the evaluation; k provides cover or an excuse for the decision
maker to favor men. Section 3.4 provides conditions under which the assumption holds in
each foundation, and further intuition.

For the remainder of the paper we will assume Dilution (Assumption 1 on {⊒i}ni=1), and
we will indicate when we additionally assume Dominance-k for some k.17

Assumptions 1 and 2 can be falsified independently of the separability of the utility
function, i.e. we can find datasets consistent with (1) but violating Assumptions 1 or 2,
meaning that there is no κ that rationalizes the data given the assumptions. Web Appendix

15Conversely, when x and z have the same gender (gender is shared), the influence of gender becomes
weaker as the set of non-shared attributes grows. This part of dilution is not relevant for choice, because
implicit preferences on shared attributes do not matter, but it is for evaluation.

16Dominance-k has no additional implications on top of Dilution for choice. This is because shared
attributes do not affect the set of matchings we can construct in choice datasets: we only need to know what
happens to the influence of a non-shared attribute when other attributes change status.

17Formally, we let ⊒i be the partial order induced by the transitive closure of the union of partial orders
induced by the two assumptions. Assumptions 1 and 2 each invoke a partial order over {0, 2}n (each is
reflexive, transitive, and antisymmetric). Their transitive closure is trivially reflexive and transitive. To see
that it is also antisymmetric, we must show that their union does not include a cycle. This follows from
the fact that dominance-k exclusively ranks all comparisons with δi = δk above those with δi ̸= δk, while
dilution never ranks such a pair.
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A.1 gives an example. The example is a dataset containing two cycles that under Dilution
jointly rule out all κ’s, but do not violate the cancellation condition of Proposition 1.

1.2 Generalizing the Model

The core matching result in this paper can be generalized to a broader class of context-
dependent utility functions, u(x, δ), where δ ∈ ∆ can represents any contextual information
about the decision. We can define a generalized separable implicit preferences utility func-
tion:

u(x, δ) = f
(
v(x) +

n∑
i=1

xiκiθi(δ)
)
.

Given a set of influence-dominance relations ⊒i, i ∈ {1, . . . , n} defined over ∆, Theorems 1
and 2 will continue to hold, meaning the testable implications of this extended model can
be characterized by an analogous matching condition.

We see four natural ways to use this extended definition of comparison. First, we could
generalize the notion of a pairwise comparison, e.g. let δ ≡ (x − z) instead of δ ≡ |x − z|,
meaning the direction of differences matters (with appropriate generalizations of Assump-
tions 1 and 2).18 Second, we could model alternative sources of variation in influence, such as
time pressure, the presence of an observer, or whether choices are incentivized. If we believe
that implicit preferences have more influence in “fast” decisions, then this implies δ ⊒i δ

′

for all i if δ has more time pressure. Third, we could allow for “sequential” comparison ef-
fects coming from previously-considered bundles (as in e.g. Kessler, Low, and Shan (2023)).
Then, x could represent the current bundle under consideration and δ a comparison with
the prior one. Fourth, δ could allow for different-sized comparison sets. For instance, we
could model “separate evaluation” as in Hsee et al. (1999). Suppose we set δ = 0 when x is
evaluated without a comparator (i.e., all attributes are shared). Assumptions 1 and 2 would
then imply implicit preferences have more influence in separate than in joint evaluation.

2 Canonical Examples

We now give a number of important examples of choice and evaluation datasets, and explain
what they reveal about the decision maker’s implicit preferences. These examples are espe-
cially useful for applications, because they yield sharp identification with few decisions. We
assume Dilution holds throughout (Assumption 1) and introduce Dominance-k (Assumption

18The Signaling-Choice foundation in Section 3 assumes the observer has mean-zero priors over attributes’
intrinsic values. If we relax that assumption the direction of attribute differences will matter. We could also
allow influence to vary for each choice set (δ ≡ {x, z}) or each bundle within a choice set (δ ≡ (x, z)).
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2) when we get to evaluation. Web Appendix A.2 formally defines each class of example in
general terms that allow for arbitrarily many attributes.

In our examples, attribute 1 is always qualification (PhD = 1), attribute 2 is gender
(Male = 1), attribute 3 is college (Yale = 1). We state each example’s implications for κ,
and in natural language. In natural language, we always state preferences relative to the +1

pole of the attribute using this shorthand: “+Male” means an implicit preference favoring
men (relative to women), “−Male” means an implicit preference favoring women (i.e., against
men), and “±Male” means we learn there is an implicit gender preference but not its sign.

Graphical representation of inequalities. We can use intuitive diagrams to visualize
inequalities in a dataset. Bundles are represented as points in n-dimensional space. A solid
arrow between bundles x x′ represents an inequality between two targets: u(x, ·) >

u(x′, ·). A dashed line indicates a comparison, so for u(x, z) we draw x - - - z. In the case
of choice, where each target is the other’s comparator, the dashed and solid lines coincide.

Thus the top-left panel of Figure 3 shows a three-bundle choice cycle x1 ≻ x2 ≻ x3 ≻ x1,
while the top-left panel of Figure 4 shows a single inequality from evaluation: u(x, z2) >

u(x, z1). Both are examples of cycles since they begin and end with the same target.

Choice examples. Take the first right triangle in Figure 3, a three-bundle cycle in which
gender and qualification vary. This decision maker has a strictly positive implicit preference
on qualification (κ1 = 1, favoring PhDs), gender (κ2 = 1, favoring men), or both. Suppose
not, i.e. suppose both were weakly negative, (κ1 ≤ 0)∧(κ2 ≤ 0), weakly favoring women and
MBAs. Informally, we see the decision maker choose an MBA over a PhD (horizontal), and
a female over a male (vertical). The diagonal choice set is a dilution of the horizontal with
respect to qualification and of the vertical with respect to gender, increasing the influence of
both implicit preferences, so they should also choose the Female MBA over the Male PhD.
Instead we see the opposite, a contradiction.

Formally, we apply Theorem 2 as follows. The dataset contains a single cycle with three
choice inequalities: u(x1,x2) > u(x2,x1), u(x2,x3) > u(x3,x2), and u(x3,x1) > u(x1,x3).
Any cyclical selection must put equal weight on each inequality, so we focus without loss of
generality on s = [1, 1, 1]T . There are three unique comparisons: δ1 = [2, 0, 0]T (horizontal),
δ2 = [0, 2, 0]T (vertical), and δ3 = [2, 2, 0]T (diagonal). The score vectors have four nonzero
elements c1,δ1 = −2, c1,δ3 = 2, c2,δ2 = −2, c2,δ3 = 2. Dilution tells us the diagonal is a
dilution of the horizontal with respect to attribute 1 (so δ3 ⊒1 δ

1), and is a dilution of the
vertical with respect to attribute 2 (so δ3 ⊒2 δ

2). Therefore there exists an influence-positive
matching for attributes 1 and 2, while attribute 3 trivially has both influence-positive and
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influence-negative matchings (its score equals zero for all δ values). This rules out any κ

with both κ1 ≤ 0 and κ2 ≤ 0. We conclude that at least one must be strictly positive, i.e.,
this decision maker has an implicit preference favoring PhDs, or men, or both.

Right Triangle Figure 8 Parallel right triangles

MBA PhD

Female

Male

Harvard

Yale

x1 x2

x3

MBA PhD

Female

Male

Harvard

Yale

x1

x3

x2

x4

MBA PhD

Female

Male

Harvard

Yale

x1 x2, x̄1

x3, x̄2x̄3

(κ1 = 1) ∨ (κ2 = 1) (κ2 = 1) (κ2 = 1)
+PhD ∨ +Male. +Male +Male

MBA PhD

Female

Male

Harvard

Yale

x1

x2

x3

MBA PhD

Female

Male

Harvard

Yale

x1 x3

x2 x4

MBA PhD

Female

Male

Harvard

Yale

x1

x2x3

x̄1x̄2

x̄3

(κ1 = 1) ∨ (κ2 = 1) ∨ (κ3 = 1) (κ2 = 1) ∨ (κ3 = 1) (κ1 = −1)
+PhD ∨ +Male ∨ +Yale. +Male ∨ +Yale. −PhD.

Figure 3: Examples of choice datasets and their implications

Take now the first Figure 8. Informally, we see a shift of preference from women to men
when we dilute the gender attribute by moving from the vertical to the diagonal choice sets.
The other attributes are only non-shared in the diagonal choice sets, but because these have
the same comparisons (all attributes are non-shared), the influence of implicit preferences
must be the same in both. As a result, no attribute other than gender can explain the cycle,
so we conclude the decision maker must implicitly favor men.19

Consider the first “parallel right triangles.” The bottom triangle reveals an implicit
preference favoring PhDs and/or men, the top triangle favors MBAs and/or men. The
decision maker must have an implicit preference favoring men to rationalize both.20

19Formally, focus w.l.o.g. on s = [1, 1, 1, 1]T . There are just two unique comparisons: δ1 = [0, 2, 0]T

(vertical) and δ2 = [2, 2, 2]T (diagonal). The latter is a dilution of the former with respect to the gender
attribute. The score vectors have just two nonzero elements c2,δ1 = −4, and c2,δ2 = 4. Thus, attribute 2
(gender) has an influence-positive matching, all other attributes trivially have both kinds of matching. This
allows us to rule out any κ with κ2 ≤ 0, so we conclude this decision maker must implicitly favor men.

20Formally, we must check all possible cyclical selections. Any cyclical selection must consist of s “copies”
of the bottom triangle and s̄ copies of the top one. The inequality corresponding to the vertical choice set,
which appears in both triangles, will have weight s+ s̄. Our conclusion continues to hold for all non-negative
integers s, s̄. In particular, when s = s̄ (e.g., a cyclical selection that counts each triangle once), we find that
the gender attribute has an influence-positive matching, while all other attributes have zero scores.
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For the remaining examples we leave it to the reader to verify their conclusions.

Evaluation examples. In choice, we could ignore implicit preferences on shared at-
tributes; we cannot for evaluation data. As a result, an evaluation cycle can have implications
for implicit preferences on every attribute. We also need to make use of our Dominance-k
assumption (Assumption 2) to sign changes in influence for attributes that change status.
In this section we will assume that the College attribute (which is always shared in our
examples) satisfies the assumption, so k = 3. See Web Appendix A.2 for analysis of datasets
with arbitrarily many attributes, with and without imposing Assumption 2.

Our examples consist of “convex scissors,” which are cycles of the form u(x, z1) ≷

u(x, z2). In a convex scissor the second comparison is always a dilution of the first with
respect to one or more attributes. We label the evaluation values y1 = y(x, z1) and
y2 = y(x, z2), and use ȳ1, ȳ2 notation for the second scissor in a pair.

Convex scissor Parallel Convex Scissors

MBA PhD

Female

Male

Harvard

Yale

x

z1z2

MBA PhD

Female

Male

Harvard

Yale

x, z̄1

x̄, z1z2

z̄2

MBA PhD

Female

Male

Harvard

Yale

x, z̄1

x̄, z1z2

z̄2

y2 > y1 y2 > y1, ȳ2 < ȳ1 y2 > y1, ȳ2 > ȳ1

(κ1 = −1) ∨ (κ2 = 1) ∨ (κ3 = 1) (κ2 > 0) (κ1 = −1) ∨ (κ3 = 1)
−PhD ∨+Male ∨+Yale. +Male. −PhD ∨+Yale.

MBA PhD

Female

Male

Harvard

Yale

xz1

z2

MBA PhD

Female

Male

Harvard

Yale

xz1, z̄2

z2, z̄1 x̄

MBA PhD

Female

Male

Harvard

Yale

xz1

z2

x̄z̄1

z̄2

y2 < y1 y2 < y1, ȳ2 > ȳ1 y2 < y1, ȳ2 > ȳ1

(κ1 = −1)∨ (κ2 = 1)∨ (κ3 = −1) (κ2 = 1) (κ3 = −1)
−PhD ∨+Male ∨−Yale. +Male −Yale.

Figure 4: Examples of evaluation datasets and their implications

Take the first example.
[

PhD
Male

Harvard

]
receives a higher evaluation when compared to

[
MBA

Female
Harvard

]
(diagonal) than when compared to

[
PhD

Female
Harvard

]
(vertical). The diagonal is a dilution of the

vertical with respect to gender, while the vertical is a dilution of the diagonal with respect to
college. Thus gender has more influence in the diagonal than the vertical, and vice-versa for
college. Qualification is shared in the vertical and non-shared in the diagonal. We assumed
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shared attributes have greater influence (via dominance-k), so qualification has less influence
in the diagonal. In sum, the observed increase in evaluation cannot be rationalized by weak
implicit preferences favoring PhDs and women and Harvard. We obtain a disjunction: they
must have an implicit preference favoring at least one of MBAs, men, or Yale.

Formally, we have one inequality: u(x, z1) < u(x, z2). Assume without loss of generality
the cyclical selection puts weight 1 on it. There are two comparisons: δ1 = [0, 2, 0]T (vertical),
and δ2 = [2, 2, 0]T (diagonal). The score has six nonzero entries: c1,δ1 = −1, c1,δ2 = 1;
c2,δ1 = −1, c2,δ2 = 1; c3,δ1 = 1, c3,δ2 = −1. Dilution tells us that δ2 ⊒2 δ1 and δ1 ⊒3 δ2,
while Dominance-k tells us δ1 ⊒1 δ

2. Thus, attribute 1 has an influence-negative matching,
and attributes 2 and 3 have influence-positive matchings. That implies we can rule out any
κ which satisfies (κ1 ≥ 0) ∧ (κ2 ≤ 0) ∧ (κ3 ≤ 0), giving us our disjunction.

Next we introduce pairs of “parallel convex scissors.” These refine identification by elim-
inating parts of the disjunction identified by a single scissor. In the first example, a male
candidate receives a higher evaluation when the influence of gender increases, while a female
candidate receives a lower evaluation. In contrast, both candidates have PhDs, from Har-
vard, yet their evaluations move in opposing directions in response to a change in influence
of those attributes. Thus the decision maker must implicitly prefer men, while their im-
plicit preferences on the other attributes are unrestricted.21 The third example (top-right)
is the same but its second scissor has the opposing sign, so it eliminates the gender attribute
instead. For the remaining examples we leave it to the reader to verify their conclusions.

Further examples. Figure 5 shows some further examples and their implications.

3 Foundations

We now provide three models of two-layer preferences, each of which can provide a founda-
tion for implicit preferences. In the ceteris paribus foundation an implicit preference is a true
preference that is constrained by a rule, which applies when certain attributes are shared.
Diluting an attribute can cause rules to switch off. In the signaling foundation, an implicit
preference is a true preference that is sometimes concealed due to a signaling motive. Dilut-
ing an attribute weakens the signaling motive. In the implicit associations foundation, an
implicit preference is an unconscious positive or negative association with an attribute, that

21Formally, we have two inequalities, with the same two comparisons as the single scissor. Both bundles
have identical values of attributes 1 and 3, but evaluations move in opposite directions when switching
from vertical to diagonal. In the cyclical selection that puts equal weight s on both scissors, these attributes’
scores equal zero, while attribute 2 has c2,δ1 = −2s and c2,δ2 = 2s. Thus attribute 2 has an influence-positive
matching, while attributes 1 and 3 have both kinds of matching, ruling out every κ with κ2 ≤ 0.
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Equilateral Non-convex
scissor

Opposing
triangles

Opposing
scissors

Extended
triangle

x1

x2

x3

xz1

z2

x1

x2x3

x̄1

x̄2x̄3

x z1

x2

x̄z̄1

z̄2

x3

x4x1

x5

x2

κ ̸= 0 Partial Falsification Falsification (κ1 = 1) ∨ (κ3 = 1)

In an equilateral triangle, Dilution does not rank influence for any attribute. We can rule out standard
preferences (Corollary 2), but nothing else. In a non-convex scissor Dilution does not tell us how influence
changes. Dominance-k can pin down influence changes for attributes 1 and 2, but we will be inconclusive
about κ3. A pair of opposing triangles, and a pair of opposing scissors are examples that violate the
cancellation condition of Proposition 1 (similar to the square cycle in Figure 2), so no κ can rationalize
these datasets. The extended triangle is a slightly more complex dataset (a five-element cycle with four δ
values) but easy to solve using the matching result (note that the score for the vertical comparisons is zero,
leaving us with the equivalent of a right triangle).

Figure 5: Additional examples of datasets and their implications

the conscious brain regards as sometimes informative, sometimes uninformative. Diluting
an attribute makes it harder to distinguish informative from uninformative associations.

To keep the discussion concise, for each foundation we provide the setup of the model
and state conditions under which the foundation implies an Implicit Preferences utility func-
tion and satisfies Dilution (Assumption 1). At the end, we give conditions under which
Dominance-k is also satisfied (Assumption 2). See Web Appendix A.3 for all proofs.

It will be useful to have a notation for the set of shared attributes in comparison |x−z|:

S|x−z| = {i : |xi − zi| = 0}.

Non-shared attributes are those not in S. We suppress the superscript unless needed.

3.1 Ceteris Paribus Decision Maker

Suppose our hiring manager is subject to a rule on their behavior: they may choose whichever
candidate they prefer, except that they are forbidden from hiring a man over an otherwise
identical woman. We state a general model of ceteris paribus decision makers who are
constrained by rules stating they should favor certain attribute values “all else equal,” but
otherwise maximize menu-independent utility. Rules can be interpreted as internal to the
decision maker (a moral obligation or personal rule) or external (e.g. a bureaucratic rule).

Multiple rules can compound or counteract one another, in which case “all else equal”
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is taken to mean when all non-rule-governed attributes are equal. Suppose a manager is
supposed to both (1) prefer female candidates all else equal, (2) prefer Black candidates
all else equal. We will assume that the rules combine such that they must choose a Black
woman over an otherwise identical White man, but when choosing between a White woman
and a Black man the decision is governed by whichever rule has more force.

Definition 9. A ceteris paribus utility function has the form:

uCP (x, z) = g(x)︸︷︷︸
true preferences

+
∑
i ̸∈S

xi λi︸︷︷︸
bonus or
penalty

1{∀j, (λj = 0) ⇒ (j ∈ S)}︸ ︷︷ ︸
=1 iff all non-rule-governed

attributes are shared

,

for some g : {−1, 1}n → R, and λ ∈ Rn.

When λi ̸= 0 we say attribute i is governed by a rule. Thus the bonus/penalty λi is applied
to a bundle if and only if (a) attribute i is non-shared (i ̸∈ S); and (b) every attribute that
is not governed by a rule (λj = 0) is shared (j ∈ S).

Proposition 2. uCP (x, z) is an Implicit Preferences utility function satisfying Dilution.

Applied to choice λi represents a bonus or penalty for choosing a bundle with xi = 1

over an alternative with zi = −1, for example when hiring a Black candidate or ordering a
low-calorie meal. Inviolable rules have λ = ∞. Applied to evaluation, λi is a bonus/penalty
applied to reported values. For example, someone might give women higher scores when
they are compared to otherwise-identical men.

Consider again the manager who truly prefers male candidates but is penalized for choos-
ing a man over an otherwise identical women. Then, he will tend to favor men when gender
is diluted (causing the rule to switch off), implying an implicit preference favoring men.
Thus, the implicit preference has the opposite sign to the penalty λi.

3.2 Signaling Decision Maker

Suppose the decision maker holds intrinsic values over attributes, but also has reputational
preferences. They care about the beliefs that some other person—perhaps their own future
self—holds over those intrinsic values. We represent their intrinsic values as g(x)+

∑n
i=1 xiwi,

where g(x) is assumed to be common knowledge, while wi terms (“weights”) are the decision
maker’s private information. We assume the observer holds mean-zero, independent Normal
priors over the weights, and updates their beliefs based on the decision maker’s actions. The
core intuition is the observer updates less about wi when attribute i is diluted, weakening
the signaling motive regarding that attribute.
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The observer’s information differs between choice and evaluation, so we describe separate
models for each. We assume throughout that the bundles x and z are chosen by Nature and
are common knowledge (i.e., we abstract from strategic choice over choice sets).

Signaling-Choice. When the decision maker chooses x over z the observer will update
their beliefs ŵi about the decision maker’s weights on non-shared attributes. We make two
assumptions, which amount to the observer expecting the decision maker to be indifferent
ex ante.22 First, the observer’s priors over all intrinsic values have identical mean, which we
normalize to zero: g(x) = 0, ∀x ∈ X . Second, we assume the observer is naïve, meaning they
are not aware of the decision maker’s reputational motives (otherwise they would expect a
particular bundle to be chosen). These are quite strong assumptions, but our conclusions
should extend to small deviations. We discuss their relevance to applications in Section 4.

We define a utility function uSC(x, z), interpreted as the utility of choosing x when the
observer knows the choice set was {x, z}. We assume that x and z are distinct, so there is at
least one non-shared attribute. We also assume that all preferences are expressed strictly.23

Definition 10. A signaling-choice utility function has the form:

uSC(x, z)︸ ︷︷ ︸
utility of

choosing x
from {x,z}

=
n∑

i=1

xiwi︸ ︷︷ ︸
intrinsic

value

+
n∑

i=1

λi︸︷︷︸
reputational
preference

for attribute i

·E

[
wi

∣∣∣∣ n∑
i=1

xiwi >
n∑

i=1

ziwi

]
︸ ︷︷ ︸

observer’s naïve posteriors
over weights when x is chosen

,

for some λ ∈ Rn and w ∼ N(0, diag(σ2
1, . . . , σ

2
n)) (observer’s priors over weights).

λi captures the decision maker’s utility of shifting the observer’s posterior over wi. The sepa-
rable setup implies the observer will only update about the weights on non-shared attributes.

Proposition 3. uSC(x, z) is an Implicit Preferences utility function satisfying Dilution.

Consider a hiring manager that prefers men but wants the observer to believe they prefer
women. When candidates vary only on gender, the observer updates a lot about the deci-
sion maker’s gender preferences from the choice. As additional attributes vary between the

22If the observer expects the decision maker to prefer one bundle over another, more dilute comparisons
can sometimes be more informative about an attribute. E.g., while choosing a male PhD over a female
MBA is plausibly less informative about gender preferences than choosing a male PhD over a female PhD,
choosing a male PhD over a female Nobel prize winner is clearly more informative. Thus our choice model
does not capture the effect of monetary incentives as discussed by Benabou and Tirole (2006), since the
observer would expect that more money is preferred to less.

23It is possible to show that a decision maker would choose to express indifference, with its consequent
reputational effects, only if they received equal utility from expressing indifference or expressing either of
the two strict preferences, i.e. uSC(x, z) = uSC(z,x). Thus the function we derive for the 2-action world
correctly predicts behavior in a 3-action world, so the model can be applied to data containing indifferences.
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bundles the observer updates less about gender, lowering the reputational cost of hiring a
man. The implicit preference κi has the opposite sign to the signaling motive λi: a motive
to signal a preference for women manifests as an implicit preference in favor of men.

Signaling-Evaluation. In evaluation we assume the decision maker reports their utility
of two bundles, x and z, with a quadratic cost of inaccuracy. An observer then makes
inferences about the decision maker’s weights wi. Unlike the choice setting, we do not need
to assume the observer has constant priors over the intrinsic values, nor that they are naïve.

We define a signaling evaluation function, uSE(x, z), show that it corresponds to an
equilibrium strategy in a signaling game, and finally that it satisfies our assumptions.

Definition 11. A signaling evaluation utility function is:

uSE(x, z) = g(x) +
n∑

i=1

xiwi +
n∑

i=1

xiλi
σ2
i

1{i ∈ S}
∑

j∈S σ
2
j + 1{i ̸∈ S}

∑
j ̸∈S σ

2
j

for some g : {−1, 1}n → R, λ ∈ Rn, w ∼ N(0, diag(σ2
1, . . . , σ

2
n)).

Lemma 1. Reporting the value of yx = uSE(x, z), yz = uSE(z,x), is an optimal strategy in
a pure-strategy Perfect Bayes Equilibrium of a signaling game in which:

1. Player 1 first chooses yx and yz to maximize

U1 =−1

2

(
yx − g(x)−

n∑
i=1

wixi

)2

− 1

2

(
yz − g(z)−

n∑
i=1

wizi

)2

︸ ︷︷ ︸
quadratic loss from inaccuracy

+
n∑

i=1

λiŵi(y
x, yz)︸ ︷︷ ︸

reputational gain

.

2. Player 2 observes yx, yz and chooses ŵ to maximize U2 = −E

[∑n
i=1(ŵi − wi)

2

∣∣∣∣yx, yz],
with g(·) and λ common knowledge, and priors w ∼ N(0, diag(σ2

1, . . . , σ
2
n)).

λj captures the decision maker’s utility of shifting the observer’s posteriors over wj, while σ2
j

is the variance of the observer’s prior on wj. The final term in uSE captures how the decision
maker adjusts her evaluations to influence the observer’s beliefs. The adjustment to attribute
i is proportional to the observer’s uncertainty about wi (σ2

i ), and inversely proportional to
the total uncertainty about the weights on attributes with the same status as i.24

Proposition 4. uSE(x, z) is an Implicit Preferences utility function satisfying Dilution.
24Unlike Signaling-Choice, we solved the model assuming a sophisticated observer. The quadratic loss

function means that player 1’s optimal strategy is independent of the observer’s prior on λ, so our solution
continues to hold if the observer has incorrect priors, including full naïveté (believing λ = 0).
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The intuition for implicit preferences in this model is very similar to the choice example,
except that the observer now updates about both shared and non-shared attributes, because
they observe distinct signals about both bundles’ values rather than just their ranking.

3.3 Implicit Associations Decision Maker

Finally we describe a decision maker made up of two agents, each with private information
about the value of a bundle (this model is based on Cunningham (2016)). The true value of
bundle x is given by:

f(x)︸︷︷︸
true value

of bundle x

= g(x)︸︷︷︸
known
by both

+
n∑

i=1

xi︸︷︷︸
known
by both

· λi︸︷︷︸
known
by first
agent

· πi︸︷︷︸
known

by second
agent

.

The first agent can be thought of as the pre-conscious brain, drawing on knowledge of
“associations” (λ ∈ Rn) between each attribute and true value, and the second agent can be
thought of as the conscious brain, which has access to “adjustments” (π ∈ Rn

+), high-level
contextual information used to adjust the value of each association.

Sequencing is as follows. The first agent reports expected values for both x and z

(E[f(x)|λ] and E[f(z)|λ]). The second agent then makes decisions taking into account
the first agent’s estimates, plus its own private information (π), but without access to the
underlying associations (λ). The second agent’s estimate of x’s value will be sensitive to
the identity of the comparator z because the first agent’s estimate of the value of z can be
informative about the associations, λ.

Definition 12. An implicit associations utility function has the form:

uIA(x, z) = E
[
f(x)

∣∣∣π, E[f(x)|λ], E[f(z)|λ]
]
,

with
πi ∈ R+ & E[πi] = 1 (1st agent’s priors)

λ ∼ N(0, diag(σ2
1, . . . , σ

2
n)) (2nd agent’s priors)

π ⊥⊥ λ (independence of priors).

uIA represents the second agent’s best guess at the true value f(x).
In equilibrium the sensitivity of utility to xi, conditional on a comparison |x − z|, will

be proportional to a weighted average of the adjustments (the πjs) on all attributes which
have the same status as i. Thus a dilution of attribute i can either increase or decrease
influence depending on the average π of the attributes with which it is mixed. That violates
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Assumption 1 which assumes a monotone effect of dilution on influence. Assumption 1
will hold if we assume agent 1’s private information is limited to just two attributes. The
econometrician does not need to know in advance which two attributes this applies to.

Proposition 5. If for all i > 2 we have σ2
i = 0 then uIA(x, z) is an Implicit Preferences

utility function satisfying Dilution.

For intuition of how implicit associations can be interpreted as implicit preferences consider
the hiring manager that has a positive association with male candidates (λi > 0), but believes
gender is normatively irrelevant (πi = 0). When the candidates differ only on gender, the
influence of implicit preferences is low, as the second agent can directly detect and override
the influence of λi. As gender is diluted, the agent 1’s high valuation of a male candidate
could be explained by another possible association, that might not be normatively irrelevant.
Agent 2 therefore only partially adjusts agent 1’s reports. Thus λi influences their decision,
increasing the utility of the man and manifesting as an implicit preference favoring men.
Note that there is only an implicit preference if both λi ̸= 0 and πi ̸= 1: the first agent must
have a nonzero implicit association and the second agent must want to adjust it.25

3.4 Conditions under which Dominance-k (Assumption 2) holds

Finally, we give sufficient conditions for Assumption 2, “Dominance-k” to hold in all foun-
dations that apply to evaluation (the assumption is not relevant to choice).

Proposition 6. The Ceteris Paribus decision maker satisfies Assumption 2 if k is not rule-
governed (λk = 0). The Signaling-Evaluation decision maker satisfies Assumption 2 if the
observer’s uncertainty about k exceeds all other attributes combined (σ2

k ≥
∑

i ̸=k σ
2
i ). The

Implicit Associations decision maker satisfies Assumption 2 if k is one of the two attributes
about which Agent 1 has private information (k ∈ {1, 2}, where σ2

i = 0,∀i > 2).

In the ceteris paribus model, the intuition depends on k’s status. Rules do not apply to
shared attributes, so if k is shared, having the same status as k disables the rule. If k is
non-shared, all rules are disabled (as k is not itself rule-governed) so influence is constant.

The signaling and implicit associations models share similar intuition: k is an attribute
with very uncertain weight or value. Then, when another attribute i has the same status
as k, it is difficult for an observer to figure out if i, or k, is driving variation in evaluations.

25The sign of the implied implicit preference depends on λi(1 − πi). If πi > 1, the second agent wants
to amplify their implicit associations (they think the first agent is too conservative). This generates an
implicit preference with the opposite sign to λi. In our example, it would increase the value of men when
the candidates differ only on gender, weakening as gender is mixed with other attributes.
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A signaling decision maker is thus more free to express their true preferences (increase
evaluation of men, decrease evaluation of women). For the implicit associations model, the
intuition is similar: there is only uncertainty about two attributes, so mixing i with k reduces
the conscious brain’s ability to learn about the association λi, thus increasing its influence.

In most cases it is intuitive to think of k as an attribute that is shared in every observed
decision. This is because in most evaluation situations both bundles will have many things in
common, many which have quite uncertain value. But to show intuitively how the assumption
can in general apply to shared and non-shared attributes, return to the hiring example and
suppose the workers could hold one of two professional awards, A or B, where the relative
value of these awards is highly uncertain.

Suppose both candidates have award A. When assigning wages to a man and woman,
awarding a higher wage to the man cannot be explained by his award, the woman has it
too! But when just evaluating two women, the manager could offer them low wages knowing
an observer will be unsure if this is just because award A has little value. Implicit gender
preferences will have greater influence when gender is shared.

Now suppose that one candidate has award A and the other has award B (so k is non-
shared). Now, if the hiring manager awards a low wage to a woman and a high wage to
a man, this could be explained by the woman having the worse certificate. But if he gives
low wages to two women, that cannot be explained by their awards. Now, implicit gender
preferences will have greater influence when gender is non-shared.

4 Guidance for applications

We now discuss some practical guidance for applications of our theory.
Identification “Cookbook.” Web Appendix A.2 expresses each canonical example from

Section 2 in a general form. The cookbook can be used to easily read off the implications of
existing data, as well as to guide new data collection. Additionally, the derivations in that
appendix illustrate how to apply the “vector” approach of Theorem 1.

Multivalued Attributes. Some attributes might take multiple values, for example job
candidates with three different types of qualification (MBA/PhD/JD) instead of two. In
such a case some attribute values could be grouped together, or the dataset partitioned to
focus on parts of the attribute space.

Ambivalence in Choice Data. We recommend focusing on choice sets where partici-
pants are likely to be close to indifferent (“ambivalence”), for two reasons. First, identification
relies on observing intransitive choices, which is unlikely when there are large differences in
explicit values v(.). Second, in our signaling-choice model dilution will hold only when the
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observer has a mean-zero prior over the decision maker’s preferences for each attribute. Note
that neither problem applies to evaluation analysis.

When there are multiple “non-ambivalent” attributes in the dataset we can group them so
that their combination plausibly satisfies ambivalence. For instance, while a hiring manager
is unlikely to be close to indifferent between a candidate with a BA and one with a PhD,
they might plausibly be so between a BA with work experience, versus a PhD without.

Our analysis of Exley (2016a)’s data demonstrates this in practice. Exley uses choice
lists of multiple binary choices between safe and risky payoffs with different recipients. Par-
ticipants are unlikely to be close to indifferent in some choices, e.g. between a large safe
payoff and a lottery with a very low win probability. We construct a binary attribute space
by selecting specific choice sets on the choice lists that are deemed close to ambivalent, based
on observed behavior in the sample, and classify participants’ implicit preferences based on
these choice sets. See Appendix A.4 for details.

One could go further and try to test whether an attribute satisfies ambivalence. The
signaling logic says the decision maker must believe an observer expects them to be (close
to) indifferent to changes in attribute i, i.e. it is the meta-cognition of the decision maker
themself that matters. One could therefore elicit participants’ beliefs about “expected” or
“average” behavior or attitudes with respect to a given attribute, to examine if this is true.

Pre-specifying an attribute space. Sometimes there will be little doubt as to how
to define attributes, not always (e.g. when dealing with multivalued or “non-ambivalent” at-
tributes). So, it may be advisable to pre-specify the attribute space before data collection, to
reduce degrees of freedom. This is of course a general issue with attribute-based approaches.

Within-subjects Data. The theory assumes we observe a single decision maker’s re-
vealed preferences, i.e., “within-subjects” data. A concern with within-subjects data is order
effects, whereby later decisions are influenced by earlier ones, e.g. due to a desire for con-
sistency. A common technique to mitigate order effects is to spread decisions over time,
intersperse them with “filler” tasks, or in other ways make earlier decisions less salient or
memorable.26 If order effects are a serious concern we might turn to between-subjects data
(one decision per participant). This has different implications for choice and evaluation:

Between-subjects Choice Data. Establishing the presence of intransitivities in between-
subjects choice data is challenging, because intransitivity is difficult to distinguish from un-
derlying preference heterogeneity (similar to the Condorcet paradox in voting). One remedy
is to make the (strong) assumption of homogeneous preferences plus noise, such as in tests

26A related concern is experimenter demand effects: participants may guess what the experimenter is
looking for from the sequence of decisions they observe. Recent work that directly manipulates such beliefs
finds mostly modest effects (de Quidt et al., 2018; Mummolo and Peterson, 2018).
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for “weak stochastic transitivity.” Alternatively, one can test for violations of the Triangle
inequality (Regenwetter et al., 2011; Müller-Trede et al., 2015). If each participant makes
one choice we would need to observe Pr(a ≻ b) + Pr(b ≻ c) + Pr(c ≻ a) > 2 to conclude
that at least one has intransitive preferences over {a, b, c}. I.e. the average choice probability
must exceed 2/3.27 Implicit preferences would need to be strong to satisfy this condition.

Between-subjects Evaluation Data. Our tools for evaluation data carry over well to
between-subjects data with some functional form restrictions (we use this in our DeSante
(2013a) application). Suppose we observe t ∈ {1, . . . , T} iid sampled individuals’ evaluations
of x with comparator z. Suppose v(.) and κ are heterogeneous across individuals, with
population averages v(x) and κ, and assume for now that θ is homogeneous. Assume also
that evaluations are affine in utility: y(x, z) = a + bu(x, z). Normalizing a = 0, b = 1, the
mean evaluation is:

1

T

T∑
t=1

[
vt(x) +

n∑
i=1

xiκi,tθi(δ)

]
−−−→
T→∞

v(x) +
n∑

i=1

xisgn(κi)|κi|θi(δ). (2)

This is equivalent to the utility function of a representative agent with implicit preferences
κrep
i = sgn(κ̄i) and influence function θrepi = |κi|θi. Thus our usual tools can identify

sgn(κ̄i), the sign of the average implicit preference in the population. If sgn(κ̄i) is positive,
we learn that κi = 1 is more common in the population than κi = −1. We could also allow
heterogeneity of the form θi,t = αi,tθi, then we would identify sgn(E[κiαi]).

Structural estimation. Our DeSante (2013a) application also structurally estimates
equation (2). This is of interest when it is not just the sign but also the magnitude of implicit
preferences that matters. This is relatively straightforward under evaluation but we believe
it would also be feasible with choice data in an appropriately-specified empirical discrete
choice model. In practice structurally estimating (2) involves estimating one parameter per
bundle equal to v(x) +

∑n
i=1 xiκiθi(δ) for some benchmark comparison δ, plus the changes

in attribute-wise implicit value when δ changes: κi (θi(δ)− θi(δ
′)). In general v(x) is not

identified without a normalization θi(δ
i) = 0 for some “minimal-influence” comparison δi.

The minimal-influence comparison δi will normally depend on i, because when influence is
low for one attribute it is usually high for another.

Choice versus evaluation. Section 2 and Web Appendix A.2 provide a set of tools
for identifying implicit preferences from binary choice and joint evaluation. Joint evaluation
has a number of advantages for applications. An evaluation “scissor” can pick up small com-
parison effects, whereas in choice we need strong enough implicit preferences, or sufficiently

27For four-element cycles the threshold is 3/4. As an example, the choice proportions in Snyder et al.
(1979)’s experiment do not satisfy the criterion, so could be due to heterogeneous, transitive preferences.
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well-calibrated choice sets, to find a cycle. Evaluation analysis does not rely on “ambiva-
lence,” and is better suited to between-subject data. Finally, it is parsimonious: we can
isolate an implicit preference with three joint evaluations (the first parallel convex scissors
in Figure 4); the shortest choice cycle that can do this is the figure 8 (four choices).

5 Applications

5.1 Implicit Risk and Social Preferences

Exley (2016a) studies “the use of risk as an excuse not to give.” She conducts two experi-
ments in which participants choose between a risky and a sure payment, where for each the
beneficiary can be either themselves or a third party.28 She uses the choices to construct cer-
tainty equivalents that value each lottery (to self and to charity) both in terms of money to
self and in terms of money to charity. She finds that, on average, participants tolerate more
risk when the risk favors them (high certainty equivalents), and tolerate less risk when the
risk favors charity (low certainty equivalents), relative to when there is no trade-off between
self and charity (both payoffs go to self or both to charity), suggesting implicit selfishness.

We apply our theory to Exley’s dataset (Exley, 2016b), augmented with data from a
replication by Ahumada et al. (2022) (henceforth “Ahumada”).29 We exhaustively classify
all implicit preferences revealed in the data, as well as behavior inconsistent with the theory.

We have four main findings. First, we confirm the presence of significant implicit self-
ishness: 50 percent of participants are implicitly selfish. Second, our approach yields new
insights in the form of implicit risk preferences : 21 percent of participants become more risk
averse when risk is diluted, while 9 percent become more risk tolerant. Third, 17 percent
of participants reveal both types of implicit preference, and implicit selfishness is associated
with implicit risk tolerance.

Fourth, we compare the original and replication samples. Estimating the same regression
specification as Exley, Ahumada et al. (2022) find qualitatively similar average behavior, but
with attenuated effect sizes and larger p-values (partly due to a smaller sample). However,
our individual-level analysis finds a striking congruence between the implicit-preference type
distributions in both samples. This strengthens our earlier conclusions, and suggests that
our approach is sensitive enough to distinguish heterogeneous preference types even when
their influence is harder to detect in average behavior.30

28In one experiment the third party is the American Red Cross, in the other it is another participant.
29They implemented a slightly shorter version of Exley’s design, in which the third party is the University

of Pittsburgh Medical Center Children’s Hospital. We thank the authors for kindly sharing these data.
30Exley briefly mentions some individual-level analysis. Her footnote 29 reports that when the win proba-
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Data. We need to do a little work to place the data in a binary attribute framework.
Here we provide a brief summary, see Web Appendix A.4 for all details.

Each participant-level dataset contains an initial normalization choice used to fix the
participant’s exchange rate between money to self and money to charity in all subsequent
decisions. It elicits an amount $X payable to charity that is just preferred to $10 to self.31

Each subsequent choice is between a safe payoff and a lottery paying a prize with prob-
ability P ∈ P . In Exley, P takes seven values: P = {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95};
Ahumada restrict to four: P = {0.05, 0.25, 0.75, 0.95}; we account for this in our analysis.
There are four kinds of choices: (1) charity gets safe vs lottery; (2) self gets safe vs lottery;
(3) charity gets safe vs self gets lottery; (4) self gets safe vs charity gets lottery. Self lotteries
pay $10 and charity lotteries pay $X. The participant selects from a choice list the smallest
safe amount that they prefer to the lottery.

Participants never choose between different lotteries, so we set up an attribute space with
one attribute per value of P , corresponding to the win probability in that choice list. Those
attributes are always shared in any observed choice set. For each P , we define four bundles
that vary in two attributes: Risk ∈ {Safe, Risky}, and Social ∈ {Generous, Selfish}.32 The
four observed choice sets are shown in black in Figure 6. We do not observe, but can impute,
a fifth preference: (Generous, Safe) ≻ (Selfish, Safe), which we show in blue.33

Analysis. Each participant’s dataset contains all of their choices across all values of P .
For each P there are five possible cycles or combinations of cycles that we can potentially
observe, shown in Figure 6. We omit inequalities that are not part of a cycle, since they

bility is 0.95, 42 percent of participants value the charity lottery strictly lower than the self lottery in terms
of money to self, but weakly higher in terms of money to charity. This does not in fact reveal implicit
selfishness, but is close to a “pro-Safe” cycle (Figure 6(b)). Our estimates are more conservative because 1)
we only count strict preferences (reducing the proportion of cycles when P = 0.95 to 26 percent) as true
indifferences are not observed; and 2) we focus on “ambivalent” choice sets (reducing it to 15 percent).

31Exley mostly excludes participants whose initial normalization choices were censored or inconsistent.
We do the same. We pool her two experiments, giving us 86 participants, plus 56 more in Ahumada’s data.

32The experiment involves choosing between options with different prizes, win probabilities, and recipients.
As explained in Section 4, for choice analysis we need “ambivalence” to hold: participants should be “close
to indifferent” along each attribute. We would not expect ambivalence to hold between e.g., larger versus
smaller prizes, or between identical monetary amounts to self and charity. Instead we construct binary
attributes such that Safe bundles pay small prizes for sure (where the size of the prize depends on P , while
Risky bundles pay larger prizes with probability P . Selfish bundles pay small prizes to self, while Generous
bundles pay larger prizes to charity. See appendix for details.

33Participants did not choose between bundles that only differ in the Social attribute. Without these
preferences, any pattern in the observed (black) choice sets could be explained by explicit selfish preferences.
E.g., those in panel (c) can be rationalized by transitive preferences (Selfish, Safe) ≻ (Selfish, Risky) ≻
(Generous, Risky) ≻ (Generous, Safe). Exley’s analysis faces a similar issue as she needs to compare lottery
valuations elicited in dollars to self to those elicited in dollars to charity. She uses the participant’s value of
X, plus a linearity in payoffs assumption, to do this. Given the data structure, that same assumption implies
(Generous, Safe) ≻ (Selfish, Safe) (see appendix for details). We never observe any choices corresponding to
(Generous, Safe) ≺ (Selfish, Safe), so cannot detect any cycles that rely on this preference.
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cannot form part of a cyclical selection. Panels (a) and (b) are figure 8 cycles revealing
implicit Risk preferences; (c) is two parallel right triangles revealing an implicit Selfish
preference; (d) and (e) show right triangles that each reveal a disjunction. Appendix Table
A1 shows a data extract for five of Exley’s participants, to illustrate what we observe in a
typical participant’s dataset.

Generous Selfish

Risky

Safe

Generous Selfish

Risky

Safe

Generous Selfish

Risky

Safe

Generous Selfish

Risky

Safe

Generous Selfish

Risky

Safe

(a) pro-Risky (b) pro-Safe (c) pro-Selfish (d) Selfish/Risky (e) Selfish/Safe

Diagrams show all possible cycles for a given value of P . Choices in black are observable in the data. The
blue horizontal choice is imputed. There are a set of additional attributes that encode each value of P .
These are always shared so we omit them for simplicity. Implications of each type of cycle are derived in
Section 2.

Figure 6: Types of cycle and the implicit preferences they reveal

We can exhaustively classify every observable dataset. Cyclical selections are weighted
collections of cycles of type (a), (b), (d), and (e) (since (c) equals one (d) and one (e)), so
all empirical content reduces to four indicators counting whether the participant exhibited
at least one cycle of the corresponding type.

The simple cases can be read off Figure 6. A participant who never exhibits a cycle
is consistent with any κ (Corollary 2). If they exhibit one or more (a) or (b) cycles, and
nothing else, we identify their implicit Risk preference only. If they exhibit one or more right
triangles of the same type ((d) or (e)), and nothing else, we identify a disjunction.

How about a participant that exhibits a combination of different types of cycle? First,
any dataset containing at least one (a) and at least one (b) cycle cannot be rationalized by
any separable comparative utility function. A cyclical selection that puts equal weight on
each will violate the cancellation condition of Proposition 1. Second, any dataset of only (d)
and (e) cycles is equivalent to a pair of right triangles, i.e., yields the same set of possible
matchings, revealing an implicit Selfish preference, and nothing about Risk.

Any dataset consisting of just type (a) and (d) cycles reveals only a pro-Risky implicit
preference, we learn nothing about implicit Selfish preferences. There is no matching we can
construct from these observed choices that would also isolate implicit Social preferences or
yield a contradiction.34 If only (b) and (e) cycles are observed we identify a pro-Safe implicit
preference and nothing else.

34Formally, let a cyclical selection consists of s copies of (a) and s′ copies of (d). There are three compar-
isons: δ1 = [2, 0]T (horizontal), δ2 = [0, 2]T (vertical), δ3 = [2, 2]T (diagonal), where δ3 ⊒1 δ1 and δ3 ⊒2 δ2.
The scores are: c1,δ1 = −2s′, c1,δ2 = 0, c1,δ3 = 2s′; c2,δ1 = 0, c2,δ2 = 4s+2s′, c2,δ3 = −4s− 2s′. Attribute 2
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Next, any dataset consisting of just type (a) and (e) cycles reveals both implicit preferences
favoring Selfish and Risky, i.e. κ1 = 1, κ2 = −1. The latter is an immediate implication of a
cyclical selection containing just (a) cycles. To show the former, consider a cyclical selection
containing s (a) cycles and 2s (e) cycles. We can construct a matching that matches the left-
side vertical choice and the SE to NW diagonal choices in (a) to opposing same-δ choices in
(e). The remaining inequalities can be matched in an equivalent way to a pair of pro-Selfish
right triangles.35 Having pinned down both κ’s, we can verify by visual inspection that
there are no other cyclical selections with contradictory implications. If the dataset were to
also contain type (d) cycles the conclusions would not change because there would be no
additional matching we could construct that would contradict the prior conclusions. Finally,
by equivalent arguments, any combination of (b) and (d) cycles (with or without additional
type (e) cycles) reveals implicit preferences favoring Selfish and Safe, i.e. κ1 = 1, κ2 = 1.

We apply this classification procedure to Exley’s and Ahumada’s pooled samples to de-
scribe the overall distribution of types. Table 1 presents the fraction of participants cor-
responding to each preference type. Columns correspond to implicit risk preference types
(pro-Risky, pro-Safe, or Unknown). Rows correspond to implicit Social preference types (pro-
Selfish or Unknown—the data structure precludes observing implicit Generous preferences).
Participants for whom we only learn a disjunction are classified as Unknown.

Implicit preferences are prevalent: 63 percent of participants are classified as having at
least one nonzero κi. Exactly half of participants are classified as implicitly selfish, while
21 percent are classified as implicitly risk averse and 9 percent as implicitly risk tolerant.
Overall, 2.8 percent of participants are inconsistent with the theory.

Table 1 also suggests a correlation between implicit preference types. Implicit risk toler-
ance is less than half as prevalent as risk aversion, but it is relatively much more common
among those who are also implicitly selfish.36

Table 2 disaggregates the results of Table 1 in a couple of ways. First, we show type
information including cases where we only identify a disjunction. Second, we show results
separately for each study. Column 1 reports the full classification for Exley’s sample, using
all seven values of P . Columns 2 and 3 report the classifications for Exley’s and Ahumada’s

always has an influence-positive matching in any cyclical selection, while attribute 1 admits influence-positive
and -negative matchings, so it must be that κ2 = 1, while κ1 can take any value.

35Formally, let the cyclical selection contain 1 “copy” of cycle (a) and 2 copies of cycle (e). Comparisons
are the same as in footnote 34. The score vectors have just two nonzero elements c1,δ1 = −2, c1,δ3 = 2.
Thus attribute 1 (Social) has an influence-positive matching, while we can construct influence-positive and
influence-negative matchings for attribute 2. This rules out any κ with κ1 ≤ 0.

36The odds ratio among those with unknown risk tolerance is 0.12 whereas it is 0.85 among the implicitly
selfish, a seven-fold increase (p = .02, from a logit regression of a dummy for implicit risk aversion on a
dummy for implicit selfishness, restricted to those with known risk preference type). We reject the null that
risk and social preference types are independent using an exact test (p = .036).
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Table 1: Frequencies of different types in combined dataset

Implicit risk preference

pro-Risky Unknown pro-Safe Total

Implicit
social

preference

pro-Selfish 0.077
(0.022)

0.331
(0.039)

0.092
(0.024)

0.500
(0.042)

Unknown 0.014
(0.010)

0.338
(0.040)

0.120
(0.027)

0.472
(0.042)

Total 0.092
(0.024)

0.669
(0.039)

0.211
(0.034)

0.972
(0.014)

Inconsistent 0.028
(0.014)

Pooled samples from Exley (2016a) and Ahumada et al. (2022), all observed values of P . Cell entries correspond to
the fraction of participants classified as each implicit preference type. Standard errors in parentheses. Row/column-
wise totals in bold. If only a disjunction over implicit preferences is revealed we classify the participant as Unknown
for both attributes. Inconsistent participants are those exhibiting at least one type (a) and type (b) cycle. N = 142
participants. Fisher’s exact test for independence of risk and social preference types: p = 0.036.

samples, restricting to P ∈ {0.05, 0.25, 0.75, 0.95} to ensure comparability. Column 4 pools
both samples and all observed P ’s (these values match Table 1).

A striking finding in Table 2 is that the type distributions identified using Exley’s and
Ahumada’s samples are quantitatively very similar to one another, and a joint test does not
reject equality of the distributions (p = 0.902).

Column 5 of Table 2 simulates the expected type distribution under a random choice
assumption (each individual preference has a 50 percent chance of pointing in either direc-
tion). We do this because some cycles depend on a smaller number of decisions pointing in
the “right” direction, so may be observed more often purely due to noise or errors. A joint
test strongly rejects equality between the pooled sample type distribution and the prediction
from random choice (p < 0.001). We also observe a qualitative asymmetry (pro-Safe types
are more common than pro-Risky) that is not predicted under random choice. Appendix
Table A2 shows the frequencies of each individual cycle type ((a)–(e)) for the same sample
restrictions, and compares them to random choice, further reinforcing this conclusion.

Some of the behavioral patterns we observe may be driven by noisy rather than systematic
preferences. For example, a participant who is nearly indifferent across several choices might
accidentally violate transitivity if they make a mistake when picking from the choice lists.
Appendix Table A3 reports a robustness check that requires “stricter” preferences—larger
inconsistencies in choice list valuations—before we register a cycle. The number of observed
cycles decreases (mechanically), but the overall type classification is quite stable.

In sum, like Exley (2016a), we find substantial inconsistencies in decision making that we
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Table 2: Frequencies of different types in Exley & Ahumada et al. datasets

Type Exley Exley Ahumada Pooled Random

7 probabilities 4 probabilities 4/7 probabilities

Inconsistent (i) 0.047
(0.023)

0.000
(.)

0.000
(.)

0.028
(0.014)

0.089

Pro-Risky only (ii) 0.012
(0.012)

0.012
(0.012)

0.018
(0.018)

0.014
(0.010)

0.073

Pro-Safe only (iii) 0.128
(0.036)

0.140
(0.037)

0.107
(0.041)

0.120
(0.027)

0.074

Pro-Self only (iv) 0.349
(0.051)

0.314
(0.050)

0.304
(0.061)

0.331
(0.039)

0.255

Pro-Risky and Self (v) 0.093
(0.031)

0.081
(0.029)

0.054
(0.030)

0.077
(0.022)

0.148

Pro-Safe and Self (vi) 0.116
(0.035)

0.093
(0.031)

0.054
(0.030)

0.092
(0.024)

0.148

Pro-Risky OR Self (vii) 0.035
(0.020)

0.047
(0.023)

0.089
(0.038)

0.056
(0.019)

0.082

Pro-Safe OR Self (viii) 0.070
(0.027)

0.151
(0.039)

0.179
(0.051)

0.113
(0.027)

0.082

No cycles (ix) 0.151
(0.039)

0.163
(0.040)

0.196
(0.053)

0.169
(0.031)

0.050

Participants 86 86 56 142
This table shows the classification of participants according to their revealed Preferences in our analysis of data from Exley (2016)

and Ahumada et al. (2022). Standard errors in parentheses. First column shows results for all seven values of P in Exley’s data.
Columns 2 and 3 restrict to P ∈ {.05, .25, .75, .95} for comparability. Column 4 uses all available data, and column 5 simulates
random choice for seven and four probabilities respectively in proportion to study sample sizes. Statistical tests. Joint test of
equality between Exley and Ahumada type distributions (restricted to 4 probabilities): p = 0.902. Equality between rows in pooled
dataset: p

(
ii = iii

)
< .001, p

(
v = vi

)
= 0.684, p

(
vii = viii

)
= 0.101. Joint versus random choice (pooled dataset): p < .001.

attribute to implicit selfishness. We also uncover novel evidence of implicit risk preferences,
even though the original study was not designed with them in mind. This highlights the
value of a model that allows for implicit preferences on multiple attributes at once. These
findings are robust to replication in a new sample and to allowing for noise.

How should we interpret implicit risk preferences? We think it is quite natural to think
of them through the lens of the implicit-associations model: the decision maker might con-
sciously be prepared to take a certain amount of risk, but their subconscious or instinctive
attitudes could be different (Loewenstein et al., 2001). Then they could be persuaded to take
more or less risk by varying the extent to which variation in risk is diluted with other at-
tributes. This could have important implications for real decisions. An implicitly risk-averse
decision maker might make more risk-averse choices when choosing between pension plans
with different attributes (where risk is more diluted) than when choosing between different
variants of the same plan. That could substantially affect long-run wealth.
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5.2 Implicit Racial Discrimination

DeSante (2013a) uses a survey experiment to test whether people reward hard work in a
“color-blind manner,” finding that Black applicants for financial aid are rewarded less for
having a good “work ethic” than White applicants (and penalized more for a bad one).
He attributes the findings to implicit racism. However, his tests cannot distinguish be-
tween implicit and explicit preferences.37 We reanalyze the data (DeSante, 2013b) using our
framework, and find significant evidence of implicit pro-White racial bias, and no significant
implicit Work Ethic preference.

In the experiment, participants from a US representative sample made hypothetical state
aid decisions for two applicants presented side by side.38 Applicants vary in Race ∈ {Black,
White}, signaled by their name.39 In some comparisons Race is shared, in others it is non-
shared. Second, in some treatments the applicants’ Work Ethic ∈ {Good, Bad} is revealed,
in which case it is always non-shared (in other treatments Work Ethic is concealed).40 All
applicants have two children whose ages are independently randomized. Childrens’ ages are
not included in the data, so we treat them as an attribute, Children ∈ {c, c′}, for which
we assume there is no implicit preference. We finally assume a “background” attribute, not
shown in our diagrams, that is always shared (e.g., all applicants have in common that they
are low-income female parents).

Figure 7 depicts the bundles with concealed Work Ethic that appear in the data (top-left),
and those with revealed Work Ethic (bottom-left). Every applicant is evaluated alongside
a Black comparator and a White comparator. So, for example, applicant (Black, Bad) is
compared with (Black, Good) and with (White, Good).

Dilution (Assumption 1) does not rank the influence of implicit racial preferences be-
tween comparisons within a scissor, because race switches status from shared to non-shared.
Instead, we assume that the “background” attribute satisfies Assumption 2. Then, the influ-
ence of racial preferences is higher when Race is shared than non-shared. This is intuitive:
many other shared attributes could “explain” why someone gives a large or small amounts

37In some tests he examines the effect of changing the race of the target holding the comparator fixed,
or changing both simultaneously. In others, he examines how evaluations change when work ethic is hidden
versus revealed, and whether that differs between Black and White applicants. Our analysis shows that to
separate implicit from explicit preferences we must hold the target fixed and vary the comparator.

38Specifically, they had up to $1,500 to allocate, with any unallocated funds going to “offset the deficit.”
The budget constraint introduces a slight complication since, when it binds, a participant that wants to
assign a high value to one applicant is constrained to give less to the other. We expect this to make it harder
to detect implicit preferences as it particularly constrains allocations when the comparison set contains two
of the most implicitly-preferred applicants. The budget constraint binds for 31 percent of participants.

39Latoya and Keisha for Black applicants, Laurie and Emily for Whites. Simonsohn (2016) highlights that
names can also signal socioeconomic status, so we might be observing implicit preferences over SES.

40These are written “Excellent/Poor” in the experiment; we use “Good/Bad” for compactness.
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to two applicants with the same Race.
The diagrams show the inequalities we would expect if participants implicitly favor

Whites: we expect higher evaluations when the comparator is White than when they are
Black. (This matches the bottom-middle example in Figure 4.)

The experiment uses a between-subjects design, that is, each participant reports exactly
one pair of evaluations, corresponding to one of the comparison sets in the diagrams above.
We therefore cannot identify implicit preferences at the individual level. Instead we com-
pare mean evaluations between comparisons. Imposing linearity, we can interpret these as
revealing mean implicit preferences in the sample (see Section 4, equation (2)).

c c′

Black

White

c c′

Black

White

Bad

Good

 Diff = 27.7 (28.3)

 Diff = 42.9 (29.2)

 Diff = 75.9 (38.7)

 Diff = -6.8 (41.6)

 Diff = 26.2 (39.8)

 Diff = 38.1 (46.2)

 Work Ethic concealed

 Work Ethic revealed

  Applicant   Comparator

(Black)      

(White)      

(Black, Bad)  

(White, Bad)  

(Black, Good)

(White, Good)

(White)      
(Black)      

(White)      
(Black)      

(White, Bad)  
(Black, Bad)  

(White, Bad)  
(Black, Bad)  

(White, Good)
(Black, Good)

(White, Good)
(Black, Good)

400 500 600 700 800
 Amount awarded to applicant

Left panel: Attributes are Children (horizontal), Race (vertical), Work Ethic (depth). Always-shared “back-
ground” attribute not shown. Variation in “Children” is not observed in the data and assumed irrelevant.
Right panel: Pairs of points corresponds to “convex scissors.” pro-White implicit preferences predict positive
“Diffs” (shown in blue if positive). 95% confidence intervals clustered by participant. N = 753 participants.

Figure 7: Reanalysis of DeSante’s data

Figure 7 presents the results. We group evaluations in pairs corresponding to six con-
vex scissors. The results suggest pro-White implicit preferences: in all cases but one the
evaluation of Blacks decreases, and the evaluation of Whites increase, when Race is shared.
The first pair of scissors, when Work Ethic is concealed, also shows a reversal of evaluation:
when Race is shared, Whites receive more than otherwise-identical Blacks. When Race is
non-shared, Blacks receive more than Whites. That can be interpreted as suggesting that
participants explicitly favor Blacks, but implicitly favor Whites.

The statistical strength of the results is modest. Of the six observed scissors, only one
difference is statistically significant. However the mean difference ($34) is highly significant
(p < 0.01). An F-test of the null that all six differences equal zero has a p-value of 0.08.
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As we explain in Section 4 and Web Appendix A.5, our linearity assumption allows us to
structurally estimate some parameters, corresponding to implicit preferences on Race, Work
Ethic, and the background attribute. By Dilution, the influence of Work Ethic is lowest, and
of the background attribute highest, when race is shared. By Dominance-k, the influence
of implicit racial preferences is highest when Race is shared. Denote higher influence values
by θHi and lower ones by θLi . We can identify 2 × κi

(
θHi − θLi

)
, which corresponds to the

increase in evaluation of a bundle with xi = 1, relative to one with xi = −1, when influence
increases from θLi to θHi . E.g., it measures the widening of the gap between Black versus
White, when the influence of Race increases.

Table 3 presents our findings. We estimate parameters separately for the hidden/revealed
Work Ethic treatments because we would expect influence of other attributes to differ be-
tween these treatments. When Race switches from non-shared to shared the gap between
White and Black applicants increases by $71 (p = .02) in the Work Ethic concealed treat-
ment, and by $67 (p = .08) in the Work Ethic revealed treatment. This corresponds to
about 12% of the mean allocation. Since we only identify the change θHrace − θLrace, that
implies that implicit racial preferences can explain at least this share of the total allocation.
The coefficients on Work Ethic and the background attribute are smaller and not significant.
The Work Ethic coefficient is −$47 (p = .18), consistent with an implicit preference against
Good applicants (Good applicants get more money in same-race comparisons).

Table 3: Quantitative estimates using DeSante’s data

Work Ethic concealed Work Ethic revealed

2× κrace

(
θHrace − θLrace

)
70.67 66.72

(30.14) (38.00)

2× κethic

(
θHethic − θLethic

)
-47.22
(35.36)

2× κbackground

(
θHbackground − θLbackground

)
-15.21 35.23
(48.98) (47.31)

Participants 378 375
Mean amount awarded 571.8 563.7

2×κrace

(
θHrace − θLrace

)
equals the change in evaluation of White applicants, relative to Blacks, when influence

increases from θLrace to θHrace. Second row corresponds to Good relative to Bad applicants, and third row to an
always-shared “background” attribute. Standard errors clustered by participant in parentheses.

Overall, the data point to implicit pro-White preferences with economically significant
influence. This implies a role for choice architecture: racially biased decisions can be miti-
gated if decision makers evaluate White and Black applicants simultaneously. However, the
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statistical strength of the results is modest. A larger sample would give more power, and
allow us to test for consistency of implicit preferences across decisions.

6 Relationship to other theories

As we have shown, the model implies substantive restrictions on the data such that we can
separately test a number of assumptions: (i) the separability of implicit preferences; (ii)
the dilution/dominance-k assumptions; (iii) existence of an implicit preference on a single
attribute; (iv) a combination of implicit preferences across multiple attributes.

We now show that these predictions are qualitatively different from existing models in
the choice literature. It is worth noting a difference in domain: we consider outcomes with
binary attributes, while most existing theory applies either to atomic outcomes or outcomes
with scalar attributes.41 Existing models can be applied to our domain but we will see that
they make qualitatively different predictions. We focus particularly on the figure 8 cycle
and show that existing models either (1) are inconsistent with a figure-8 cycle; or (2) are
consistent but without ruling out other patterns, such as the square cycle. Our empirical
choice application finds that numerous participants exhibit figure-8 cycles.

Contingent weighting. There are many theories of multiattribute choice in which the
weights on each attribute vary with the choice set, sometimes called “contingent weighting”
(Kőszegi and Szeidl, 2012; Cunningham, 2013; Bordalo et al., 2013; Bushong et al., 2020).
The models cited are all inconsistent with a figure-8 cycle because the weights on each
attribute depend only on the marginal distribution of realizations of that attribute in the
choice set, whereas in our model the weight depends on the joint distribution of attributes,
via the dilution assumption.42

Inattention. Inattention models (Sims, 2003; Caplin and Martin, 2014; Woodford, 2012)
can rationalize some anomalies in choice. We might expect that choices in which more
attributes differ might be more complex, implying dilution would increase complexity, and in

41Additionally, our formalism restricts attention to binary comparisons, so we cannot model inconsistencies
that stem from adding elements to the comparison set, such as decoy and compromise effects. We discuss of
extensions to nonbinary comparisons in the Conclusion.

42 In Kőszegi and Szeidl (2012) and sensitivity is positively related to the range of values on an attribute,
in Bushong et al. (2020) it is negatively related to the range, in Cunningham (2013) it is negatively related
to the average, and in Bordalo et al. (2013) it is (roughly) negatively related to the proportional range (range
divided by the average). Suppose utility is entirely separable in each attribute, meaning it can be written
as u(x,A) =

∑
i ui(xi, {aji}mj=1), where aji is the ith attribute of the jth element of the choice set, A. Then

a figure 8 intransitivity could never occur because—using our leading example—the marginal distribution
of the gender attribute remains the same in all four choice sets, thus the difference in attribute-utility (ui)
between “Male” and “Female” must remain the same. Separability holds for each of the models discussed
above except Bordalo et al. (2013), but to the best of our knowledge that model is not consistent with
intransitive cycles in binary choice with two attributes (Ellis and Masatlioglu (2021)).
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turn might make the decision maker less sensitive to attribute variation. This might generate
an intransitivity but it would not generate a strict reversal of the direction of preference as
we see in the figure-8. Thus we would expect at most to see movement toward indifference
(or a convergence in reported evaluations) as comparisons become more complex.

Evaluability. Theories of “evaluability” (Hsee et al., 1999; Hsee and Zhang, 2010) apply
to evaluations and assume that people sometimes become more sensitive to an attribute in
joint evaluation than separate evaluation.43 Evaluability effects could thus generate compari-
son effects on evaluation, but they would not generate a reversal, as can happen in our model
(i.e., if x is evaluated above z in separate evaluation, we would not expect that pattern to
reverse in joint evaluation).

Inference. Another mechanism that can generate intransitivities is inference from the
choice set (e.g. Wernerfelt (1995)). Inference can rationalize any pattern of choices (including
a square cycle), the question is what priors would be needed to justify the rationalization.
For the Figure 8 cycle in the Introduction it would require that intrinsic and informational
value of gender are opposite, i.e. the decision maker must believe that women are intrinsically
better than men, but that the degrees men get are better than the degrees women get.
While this might hold in certain situations, we believe our preference-based explanation will
typically be more plausible, especially in cases with familiar attributes about which we would
not expect a decision maker to substantially update from the choice set.

Noise. Noisy or stochastic choice, or heterogeneity, can cause intransitivities even when
the underlying preferences are transitive. We discuss this issue in relation to analysis of
between-subjects data (Section 4), and take some practical steps to address it in our empirical
applications in Section 5. However, we do not provide a fully-specified model of stochastic
implicit preferences. Allen and Rehbeck (2023) is an important related paper insofar as
it constructs a random utility model with preferences over attributes (strictly, a hybrid of
atomic and attribute-based preferences, with a taste for randomization), and shows how
preferences can be identified. However the implied behavioral restrictions are qualitatively
different to ours.44 In the presence of noise, the data requirements for identification from
individual behavior are increased due to the need to observe choice probabilities.

Atomic outcomes. A number of theories have a very similar “two layer” motivation
to ours: decision makers select from a choice set the element which maximizes their true

43See Cunningham (2013) for a Bayesian rationalization. Kahneman and Frederick (2005) discuss a similar
phenomenon, that sensitivity tends to be higher in within-subjects than between-subjects experiments. We
can extend our framework to capture separate evaluation, see Section 1.2.

44The leading example of behavior ruled out by this theory is where a change to bundle x affects the choice
probabilities of other bundles in the same choice set but not that of x; this is also ruled out in our theory,
but only trivially so because we only consider 2-element choice sets, and does not relate to key hallmarks of
our theory such as the figure-8 cycle.
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preference, from within the subset which are undominated relative to some other relation (or
set of relations). The models differ in the nature of the relations: Manzini and Mariotti (2012)
assume a single semiorder, Cherepanov et al. (2013) assume multiple binary relations, and
Ridout (2021) assumes multiple complete orders. These models treat outcomes as “atomic”
while we treat outcomes as bundles of binary attributes. Models with atomic outcomes
are more parsimonious, and those models give unambiguous predictions for choice sets with
3 or more elements, which ours does not. An advantage of our approach is that implicit
preferences can be identified from binary choices.45 Additionally, linking implicit preferences
to attributes instead of atomic outcomes facilitates out-of-sample predictions: our hiring
manager’s gender bias can be predicted to carry over to other female candidates as well.

Cubitt et al. (2018). The only paper we are aware of that identifies a figure-8 pattern in
choice (besides Cunningham (2016), on which our implicit associations foundation is based)
is Cubitt et al. (2018). They outline a model in which sensitivity to an attribute decreases
when more attributes vary, but the utility of money does not change. Thus, people are
more willing to accept financially-compensated delay when considering two different goods
at different time horizons than two identical goods (see Figure 1). More generally, dilution
will always increase the relative value of bundles containing money, and that model cannot
generate strict cycles over non-monetary attributes, as used in most of our examples.

7 Conclusion

Our paper is motivated by an assumption that is latent in a number of prior studies: people
sometimes hold two opposite preferences regarding an attribute and that one preference—
the implicit preference—has greater influence when the comparison mixes its attribute with
others. We formalize that assumption and fully characterize its testable implications.

Our framework is compatible with implicit preferences’ influence depending on other
contextual factors such as time pressure, cognitive load, stated versus revealed preferences,
etc. An advantage of our dilution-based approach is that none of this auxiliary information is
required for identification. To the extent that other factors also predict variation in influence
we would expect to identify the same sets of implicit preferences. It would also be useful to
extend the theory to deal with data on choice proportions, e.g. the fraction of people who
choose x over z, either assuming an unobserved distribution of deterministic preferences, or
irreducibly stochastic preferences as in Allen and Rehbeck (2023).

Some further extensions of interest include generalizing the representation theorem to
45With atomic elements binary choice will generally be uninformative: a cycle of the form a ≻ b ≻ c ≻ a

implies that there must exist some constraint on choice, but nothing more.
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allow for multivalued attributes, or for bundles that are missing some attributes. Suppose
our hiring manager chooses a female over a male, a male over hiring nobody, and “no hire”
over a female. If an attribute has greater influence when one bundle is missing that attribute
(“no hire” is missing gender), this would reveal a pro-male implicit preference.

It is natural to ask how implicit preferences will be revealed in comparison sets larger than
two elements. Here, the predictions of our three foundational models diverge. The concept
of “influence” is most naturally interpreted as a property of a choice set in the implicit
associations model, but as a property of a choice in the signaling and ceteris-paribus models.
The distinction does not matter for binary choice sets, but does for larger sets. Thus our
method of identifying implicit preferences from binary choice or joint evaluation necessarily
loses some generality when extended in this way.

The theory is relevant for choice architecture design. It predicts that implicit preferences—
such as racial or gender bias—have less influence in less-dilute comparisons. So minority-
group candidates could be positioned for comparison with majority-group candidates who
are similar on other dimensions. See e.g. Bohnet et al. (2016) for related discussion.

We see rich scope for empirical applications, through data reanalysis and fresh experi-
ments, to map out the existence, strength of influence, consistency, and out-of-sample predic-
tiveness of implicit preferences across domains. Our applications found evidence of implicit
selfishness, implicit risk preferences, and implicit racial bias. Figure 1 suggests some addi-
tional domains that we see as promising, including temptation, embarrassing decisions, other
kinds of prejudice, framing, and time discounting. We particularly highlight the Framing
example. There, we conceptualize a frame as an attribute over which the decision maker
has zero explicit preference but a nonzero implicit preference. Thus they are indifferent be-
tween two prospects with identical payoffs and different frames, but frames influence choice
between non-identical prospects. These, and other applications, we leave to future research.
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8 Appendix: Proof of Theorems 1 and 2

To maintain readability in the proofs we use δ to represent a generic comparison |x− z| ∈
{0, 2}n, allowing us to write, e.g., Mi,|x−z|,|x′−z′| as Mi,δ,δ′ .

Proof of Theorem 1

Each inequality in dataset D can written as v(xj) +
n∑

i=1

xj
iκiθi(δ

j) ≥ v(x′j) +
n∑

i=1

x′j
i κiθi(δ

′j),

where the inequality is strict for j ≤ m̄. We can write the two functions, v(·) and θi(·) as
vectors v ∈ R2n and θ ∈ Rn2n , with elements vx = v(x) (one entry for each x ∈ X ), and
θiδ = θi(δ) (one entry for each i ∈ {1, ..., n} and comparison δ ∈ {0, 2}n).

We can now state the problem as follows. The vector of implicit preferences κ rationalizes
D if and only if there exist vectors v and θ such that (1) every inequality in D is satisfied,
and (2) θ obeys influence-dominance, meaning for all i, δ, δ′, (δ ⊒i δ

′) =⇒ (θiδ ≥ θiδ′).
We can write D’s inequalities in matrix form with [ P̂ X̂ ] [ vθ ] representing the m̄ strict

inequalities, and [ P̄ X̄ ] [ vθ ] representing the m− m̄ weak inequalities. Each row corresponds
to one inequality from the dataset. The matrix P =

[
P̂
P̄

]
∈ Zm×2n holds coefficients on v,

with entries:
P j︸︷︷︸

row
j∈1,...,m

, x︸︷︷︸
column
x∈X

= 1{x = xj}︸ ︷︷ ︸
LHS of inequality

− 1{x = x′j}.︸ ︷︷ ︸
RHS of inequality

The matrix X =
[
X̂
X̄

]
∈ Zm×n2n holds coefficients on θ, with entries:

X j︸︷︷︸
row

j∈1,...,m

, iδ︸︷︷︸
column
i∈1,...,n
δ∈{0,2}n

= xj
iκi 1{|xj − zj| = δ}︸ ︷︷ ︸

=1 if LHS of inequality j
has comparison δ

− x′j
i κi 1{|x′j − z′j| = δ}.︸ ︷︷ ︸

=1 if RHS of inequality j
has comparison δ′

Every inequality in D is satisfied if and only if [ P̂ X̂ ] [ vθ ] ≫ 0 and [ P̄ X̄ ] [ vθ ] ≥ 0.
We encode the influence-dominance relations ⊒i, i = {1, ..., n} as a matrix of coefficients

on θ: Q ∈ Zn2n2n×n2n . Q has one row for each combination of an attribute l and pair of
comparisons δ̄, δ̄′ (n2n2n rows in total). A row will contain non-zero entries only if δ̄ ⊒l δ̄

′.
If so, the row has entry +1 in the column that corresponds to attribute l and comparison δ̄,
and has entry −1 in the column corresponding to attribute l and comparison δ̄′:

Q lδ̄δ̄′︸︷︷︸
row

l∈{1,...,n}
δ̄,δ̄′∈{0,2}n

, iδ︸︷︷︸
column

i∈{1,...,n}
δ∈{0,2}n

= 1

{
(i = l)︸ ︷︷ ︸
column

corresponds to l

∧ (δ̄ ⊒i δ̄
′)︸ ︷︷ ︸

δ̄ influence-
dominates δ̄′

}
×

(
1{δ = δ̄}︸ ︷︷ ︸
= 1 if column

corresponds to δ̄

− 1{δ = δ̄′}︸ ︷︷ ︸
= 1 if column

corresponds to δ̄′

)
.
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Then, the vector θ obeys influence-dominance if and only if Qθ ≥ 0. Putting the pieces
together, we can say that κ rationalizes D if and only if the following Condition holds:

Condition 1. There exists a real-valued vector [ vθ ] satisfying

[
P̂ X̂

] [v
θ

]
≫ 0 (all positive)[

P̄ X̄

0 Q

][
v

θ

]
≥ 0 (all non-negative).

Motzkin’s Rational Transposition Theorem (Border (2013)) tells us that Condition 1 will be
true if and only if our next condition, Condition 2, is false. Condition 2 expresses that a
non-negative integer weighted sum of rows of

[
P X
0 Q

]
yields a vector of zeroes.

Condition 2. There exist integer-valued vectors p̂ ∈ Zm̄, p̄ ∈ Zm−m̄, q ∈ Zn2n2n (with
p ≡

[
p̂
p̄

]
), satisfying:

p̂T
[
P̂ X̂

]
+ p̄T

[
P̄ X̄

]
+ qT

[
0 Q

]
=

[
pT qT

] [P X

0 Q

]
= 0T ,

p̂ > 0 (all non-negative, at least one positive)

p̄ ≥ 0, q ≥ 0 (all non-negative)

Loosely speaking, given implicit preferences κ, there exist vectors v and θ that can rationalize
the dataset if and only if there is no combination of rows in

[
P X
0 Q

]
, which exactly cancel.

* * *

Our next Condition translates the matrix notation of Condition 2 into algebraic form:

Condition 3. There exist vectors p ∈ Nm, q ∈ Nn2n2n, such that ∀x ∈ X:∑
j:{xj=x}︸ ︷︷ ︸

appearances of x
on LHS

pj =
∑

j:{x̄j=x}︸ ︷︷ ︸
appearances of x

on RHS

pj,

and ∀i ∈ {1, . . . , n}, δ ∈ ∆,∑
j:|xj−zj |=δ︸ ︷︷ ︸

inequalities with
δ on LHS

pjx
j
iκi −

∑
j:|x′j−z′j |=δ︸ ︷︷ ︸

inequalities with
δ on RHS

pjx
′j
i κi +

∑
δ̄′:δ⊒iδ̄′︸ ︷︷ ︸

comparisons
dominated by δ

qiδδ̄′ −
∑

δ̄:δ̄⊒iδ︸ ︷︷ ︸
comparisons
dominating δ

qiδ̄δ = 0
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with pj > 0 for some j ≤ m̄.

Proof that condition 3 is equivalent to condition 2. This proof is simply a rear-
rangement of the matrix condition of 2 into the algebraic conditions of 3.

First we can note that these two sets of assumptions are equivalent:

• p̂ ∈ Zm̄, p̄ ∈ Zm−m̄, q ∈ Zn2n2n , p̂ > 0, p̄ ≥ 0, q ≥ 0,

• p ∈ Nm, q ∈ Nn2n2n with pj > 0 for some j ≤ m̄.

Next, given pTP = 0 then, from the definition of P , we know that for each x ∈ X we have:

m∑
j=1

pj
(
1{x = xj} − 1{x = xj}

)
= 0.

Rearranging we get: ∑
j:{xj=x}

pj =
∑

j:{x̄j=x}

pj.

Next, given [ pT qT ]
[
X
Q

]
= 0T , then for each i and δ we have:

m∑
j=1

pjXj,iδ︸ ︷︷ ︸
elements of X selected by p

+
n∑

l=1

∑
δ̄∈{0,2}n

∑
δ̄′∈{0,2}n

qlδ̄δ̄′Qlδ̄δ̄′,iδ︸ ︷︷ ︸
elements of Q selected by q

= 0

Using the definitions of X and Q we can write this as:

∑
j:|xj−zj |=δ

pjx
j
iκi −

∑
j:|x′j−z′j |=δ

pjx
′j
i κi +

∑
δ̄′:δ⊒iδ̄′

qiδδ̄ −
∑

δ̄:δ̄⊒iδ

qiδ̄δ = 0

Finally, note that Condition 1 guarantees us only real-valued vectors v and θ, but our
definition (1) imposes θ ≥ 0. This is without loss of generality: for any utility function with
real-valued θ we can renormalize v(.) and θ to obtain a utility function with θ ≥ 0 that
assigns the same utility to every (x, z).

Proof of Theorem 2

We now prove that the matching condition in Theorem 2 is equivalent to Condition 2:

Condition 4. There exists a cyclical selection s ∈ Nm in which, (1) every attribute with
a positive implicit preference (κi = 1) has an influence-negative matching, and (2) every
attribute with a negative implicit preference (κi = −1) has an influence-positive matching.
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Proof that condition 4 implies condition 2. Given a cyclical selection s and a set of
matching matrices {Mi}ni=1 we will construct vectors p and q such that [ pT qT ]

[
P X
0 Q

]
= 0T .

Let:
∀j ∈ {1, . . . ,m}, pj = sj

∀i ∈ {1, . . . , n}, δ, δ′ ∈ {0, 2}n, qiδδ′ = Mi,δ,δ′ .

By the definition of a cyclical selection we have p̂ > 0 and p̄ ≥ 0, and by the definition of a
matching we have q ≥ 0. For each element of the vector pTP ∈ Z2n , which is indexed by x,
we can write:

m∑
j=1

pjPj,x =
m∑
j=1

sjPj,x =
m∑
j=1

sj
(
1{x = xj} − 1{x = x′j}

)
= 0.

Where the first equality follows from the definition of p, the second from the definition of P ,
and the third from the definition of a cyclical selection: each bundle x must appear equally
often on the left- and right-hand side. Thus [ pT qT ] [ P0 ] = 0T .

An element of the vector [ pT qT ]
[
X
Q

]
∈ Zn2n , indexed by (iδ), can be expressed as:

m∑
j=1

pjXj,iδ +
n∑

l=1

∑
δ̄∈{0,2}n

∑
δ̄′∈{0,2}n

qlδ̄δ̄′Qlδ̄δ̄′,iδ

Using the definitions of X and Q we can write this as:∑
j:|xj−zj |=δ

pjx
j
iκi −

∑
j:|x′j−z′j |=δ

pjx
′j
i κi +

∑
δ̄′:δ⊒iδ̄′

qiδδ̄′ −
∑

δ̄:δ̄⊒iδ

qiδ̄δ (3)

Given p = s the first two terms equal κi multiplied by the score for that i, δ pair:∑
j:|xj−zj |=δ

sjx
j
iκi −

∑
j:|x′j−z′j |=δ

sjx
′j
i κi = κici,δ.

Take the last two terms of (3) and substitute qiδδ′ = Mi,δ,δ′ . We obtain:

∑
δ̄′:δ⊒iδ̄′

Mi,δ,δ̄′ −
∑

δ̄:δ̄⊒iδ

Mi,δ̄,δ =
∑

δ̄′∈{0,2}n
Mi,δ,δ̄′ −

∑
δ̄∈{0,2}n

Mi,δ̄,δ =

−ci,δ , κi = 1

ci,δ , κi = −1

= −κici,δ,

which uses Definition 8. The first equality follows from “matches obey dominance” and the
second from “net flows are matched,” by the premise that every attribute with κi = 1 has
an influence-negative matching and every attribute with κi = −1 has an influence-positive
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matching. Substituting into (3) we obtain [ pT qT ]
[
P X
0 Q

]
= 0T , establishing Condition 2.

Proof that condition 2 implies condition 4. Given the vectors p̂, p̄, q, we will construct
a vector s and matrices Mi, i = {1, . . . , n} from and show that they satisfy Definitions 3 and
8:

∀j ∈ {1, . . . ,m}, sj = pj

∀i ∈ {1, . . . , n}, δ, δ′ ∈ {0, 2}n, Mi,δ,δ′ = qiδδ′1{δ ⊒i δ
′}

We can verify that sj > 0 for at least one j ≤ m̄ because p̂ > 0, and that sj ≥ 0 and
Mi,δ,δ′ ≥ 0 because p̄, q ≥ 0. To confirm that s is a cyclical selection we need to show that∑m

j=1 sj1{x = xj} =
∑m

j=1 sj1{x = x′j}. This follows because pTP = 0T (by condition 2),
with elements (indexed by x):

m∑
j=1

pjPj,x =
m∑
j=1

pj1{x = xj} −
m∑
j=1

pj1{x = x′j},

where the equality comes from the definition of P .
We must finally verify that Mi satisfies the conditions of Definition 8. Observe that:

1. Matches obey dominance: ∀δ, δ′ ∈ {0, 2}n, (Mi,δ,δ′ > 0) =⇒ (δ ⊒i δ
′). This immedi-

ately follows because we constructed Mi from q as Mi,δ,δ′ = qiδδ′1{δ ⊒i δ
′}.

2. Net flows are matched, i.e. for every δ ∈ {0, 2}n and i ∈ {1, . . . , n} with κi = 1:

∑
δ̄′∈{0,2}n

Mi,δ,δ̄′ −
∑

δ̄∈{0,2}n
Mi,δ̄,δ =

∑
δ̄′:δ⊒iδ̄′

qi,δ,δ̄′ −
∑

δ̄:δ̄⊒iδ

qi,δ̄,δ (by construction of M)

= (qTQ)iδ (by definition of Q)

= −(pTX)iδ (by condition 2)

= −
∑

j:|xj−zj |=δ

pjx
j
i +

∑
j:|x′j−z′j |=δ

pjx
′j
i (by definition of X and κi = 1)

= −
∑

j:|xj−zj |=δ

sjx
j
i +

∑
j:|x′j−z′j |=δ

sjx
′j
i (by construction of s)

= −ci,δ (by definition of ci,δ)

So i has an influence-negative matching when κi = 1. The same argument will show that
when κi = −1, then i has an influence-positive matching.
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A Web Appendix to “Implicit Preferences”

For Online Publication Only

A.1 Example dataset that falsifies Dilution but not Cancellation

Consider a decision maker choosing between bundles with n = 4 attributes. In the diagram
below we draw two figure 8 cycles, in three dimensions, holding the fourth fixed. The first
figure 8 has x4 = −1 and the second figure 8 has x4 = 1.

Cycle 1 Cycle 2 Observed comparisons

x4 = −1 x4 = 1

δV = [0, 2, 0, 0]T (vertical)

δFD = [2, 2, 0, 0]T (front diagonal)

δSD = [0, 2, 2, 0]T (side diagonal)

Denote by s1 the weight put on cycle 1 in cyclical selection s, and s2 the weight on cycle
2. At least one must be strictly positive. The condition in Proposition 1 tells us that a
dataset is consistent with a separable comparative utility function provided there is no s

such that every entry in the score vector c is nonzero. Observe that for attribute 2 and δFD

the score is 4s1, while for attribute 2 and δSD the score is −4s2, therefore at least one of
these entries must be nonzero in any cyclical selection: there exists a separable comparative
utility function consistent with the dataset.

However that separable comparative utility function does not satisfy Dilution (Assump-
tion 1). The first cycle rules out all κs with κ2 ̸= 1, while the second rules out all κs with
κ2 ̸= −1, so there exists no κ that can rationalize the dataset.
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A.2 “Identification Cookbook”: Derivation of Canonical Examples

We now formally define each of the examples from Section 2, and derive their implications
using our representation results. All definitions are stated in terms of strict inequalities, but
it is sufficient if at least one inequality in each cyclical selection is strict. We always assume
Dilution (Assumption 1) holds, and introduce Dominance-k (Assumption 2) when we get to
evaluation.

We recommend reading the definitions alongside the diagrams in Section 2.

Choice Examples.

Definition 13 (Right triangle). A right triangle is a choice cycle over three distinct bundles,
ordered x1 ≻ x2 ≻ x3 ≻ x1, where |x1 − x2|+ |x2 − x3| = |x1 − x3|.

Corollary 3. A right triangle reveals at least one non-zero implicit preference, favoring x3’s
realization of an attribute that is non-shared with x1:∨

i:x3
i ̸=x1

i

(x3
iκi = 1).

A single right triangle cannot unambiguously identify a single implicit preference, because
by construction, x3 and x1 must differ on at least two attributes.

Definition 14 (Figure 8). A figure 8 is a choice cycle over four distinct bundles, ordered
x1 ≻ x2 ≻ x3 ≻ x4 ≻ x1. It must satisfy two conditions: (1) there are only two unique
comparison vectors |x1 − x2| = |x3 − x4|, and |x2 − x3| = |x1 − x4|; and (2) the latter
comparisons differ on a superset of attributes: |x2 − x3| > |x1 − x2|.

Corollary 4. A figure 8 reveals at least one non-zero implicit preference, favoring x4’s
realization of an attribute that is non-shared with x3:∨

i:x3
i ̸=x4

i

(x4
iκi = 1).

When x3 and x4 differ on a single attribute, we learn the sign of its implicit preference. The
figure 8 is the shortest choice cycle that can isolate a single implicit preference.

Definition 15 (Parallel right triangles). A pair of parallel right triangles is a cyclical se-
lection consisting of two right triangles x1 ≻ x2 ≻ x3 ≻ x1 and x̄1 ≻ x̄2 ≻ x̄3 ≻ x̄1,
satisfing two conditions: (1) identical signed differences on (x2,x3) and (x̄1, x̄2) (that
is, x2 − x3 = x̄1 − x̄2); and (2) opposing signed differences on (x1,x2) and (x̄2, x̄3)

(x1 − x2 = −(x̄2 − x̄3)).
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Corollary 5. A pair of parallel right triangles reveals at least one non-zero implicit prefer-
ence, favoring x3’s realization of an attribute that is non-shared with x2:∨

i:x3
i ̸=x2

i

(x3
iκi = 1).

Parallel right triangles refine the identification of single triangles by eliminating part of
each individual triangle’s disjunctions. In particular, they eliminate attributes that are non-
shared in |x1 − x2| and |x̄2 − x̄3| (where the triangles disagree), leaving the attributes that
are non-shared in |x2 − x3| and |x̄1 − x̄2| (where they agree).

Evaluation Examples. With evaluation data we cannot ignore implicit preferences on
shared attributes.As a result, in general we identify disjunctions over implicit preferences
on every attribute. Additionally, Dilution does not restrict how influence changes when an
attribute goes from shared to non-shared, so we sometimes draw indeterminate conclusions
about some implicit preferences. Assumption 2 can resolve these indeterminacies.

The cyclical selections we study consist of one or more “scissor” inequalities, which have
the same target on the left- and right-hand sides, taking the form u(x, z) > u(x, z′).46

Definition 16 (Convex scissor). A convex scissor is a pair of evaluations of a single bundle
x with two different comparators: y1 = y(x, z1), y2 = y(x, z2). Two conditions must be
satisfied: (1) the evaluations are not equal (y1 ̸= y2), and (2) the second comparison differs
on a superset of attributes (|x− z2| > |x− z1|).

Corollary 6. A convex scissor reveals at least one non-zero implicit preference:

y2 > y1 (i) favoring x’s realization of an attribute that it does not share with z1,
(ii) disfavoring x’s realization of an attribute that it shares with z2, or
(iii) with indeterminate sign on any other attribute.

y2 < y1 (implies the reverse of y2 > y1)

Defining Υ = sgn(y2 − y1) ∈ {−1, 1}, we can write:∨
i:xi ̸=z1i

(xiκiΥ = 1) ∨
∨

i:xi=z2i

(xiκiΥ = −1) ∨
∨

i:z1i ̸=z2i

(κi ̸= 0).

46Because of how we construct evaluation datasets (see section 1), this inequality may not literally appear
in the dataset. E.g., we might have u(x, z) > u(x̄, z̄) in one row and u(x̄′, z̄′) > u(x, z′) in another. We can
construct an equivalent cyclical selection by including every inequality that lies in between. This is equivalent
to the single inequality, because every intermediate u(x′′, z′′) will appear on the RHS of one inequality and
the LHS of the next, so their contributions to the score for the corresponding δ will always equal zero.
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The shift of comparison from z1 to z2 changes influence for every attribute. Attributes that
are non-shared in both comparisons become more dilute, while attributes that are shared in
both comparisons become less dilute. Attributes that are shared in |x− z1| but non-shared
in |x−z2| change influence but Assumption 1 (Dilution) does not tell us in which direction.

Assumption 2 (Dominance-k) resolves the ambiguity. While the assumption allows for
either i or k to change status, we assume for simplicity that attribute k is either always shared
(i.e., k ∈ {i : xi = z2i }), or always non-shared (i.e., k ∈ {i : xi ̸= z1i }), in all comparisons.

Corollary 7 (Convex scissor with Dominance-k). Suppose Assumption 2 holds. Let Θ = 1

when k is always shared (xk = z1k = z2k), and Θ = −1 when k is always non-shared (xk ̸= z1k
and xk ̸= z2k). A convex scissor reveals:∨

i:xi ̸=z1i

(xiκiΥ = 1) ∨
∨

i:xi=z2i

(xiκiΥ = −1) ∨
∨

i:z1i ̸=z2i

(xiκiΥ = −Θ) ,

The examples in section 2 assumed attribute k is shared (Θ = 1).
Combining two scissors can refine our identification of implicit preferences:

Definition 17 (Parallel convex scissors). A pair of parallel convex scissors is a dataset
consisting of two convex scissors, y1 = y(x, z1), y2 = y(x, z2) and ȳ1 = y(x̄, z̄1), ȳ2 =

y(x̄, z̄2), x ̸= x̄. Denote the signs of evaluation changes by Υ = sgn(y2 − y1) and Ῡ =

sgn(ȳ2 − ȳ1). Two conditions must be satisfied: (1) identical or opposing signed differences
on (x, z1) and (x̄, z̄1) (i.e., either x−z1 = x̄− z̄1 or x−z1 = −(x̄− z̄1)); and (2) identical
absolute differences on (x, z2) and (x̄, z̄2) (i.e., |x− z2| = |x̄− z̄2|).47

Corollary 8. A pair of parallel convex scissors reveals at least one non-zero implicit pref-
erence. There are many possible cases, summarized in the following disjunction:∨

i:xi ̸=z1i

(
κi(xiΥ+ x̄iῩ) = 2

)
∨

∨
i:xi=z2i

(
κi(xiΥ+ x̄iῩ) = −2

)
∨

∨
i:z1i ̸=z2i

(
κi(xiΥ+ x̄iῩ) ̸= 0

)
.

Parallel convex scissors refine the implications of their constituent scissors when there are
attributes with xiΥ = −x̄iῩ, because the terms associated with those attributes are elim-
inated. Note that this does not rely on Assumption 2. Intuitively, the observed behavior
cannot be exclusively driven by any combination of implicit preferences on eliminated at-
tributes, because evaluation moved in contradictory directions in the two scissors. We achieve

47We also assume that the only information derived from the evaluations is the ranking of y1, y2 and
the ranking of ȳ1, ȳ2, i.e. we do not exploit the ranking of evaluations between scissors. In principle such
information could be used to extract additional information, but we do not model this for sake of brevity.
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unique identification if all but one attribute is eliminated. Assumption 2 can further refine
identification when some implicit preferences are inconclusive:

Corollary 9 (Parallel convex scissors with Dominance-k). Suppose Assumption 2 holds. Let
Θ = 1 when k is always shared (xk = z1k = z2k) and (x̄k = z̄1k = z̄2k), and Θ = −1 when k is
always non-shared (xk ̸= z1k = z2k) and (x̄k ̸= z̄1k = z̄2k). The parallel convex scissors reveal:∨
i:xi ̸=z1i

(
κi(xiΥ+ x̄iῩ) = 2

)
∨

∨
i:xi=z2i

(
κi(xiΥ+ x̄iῩ) = −2

)
∨

∨
i:z1i ̸=z2i

(
κi(xiΥ+ x̄iῩ) = −2Θ

)
.

A.2.1 Proofs

Our derivations use a couple of tricks. First we show that we can represent each example with
just three “grouped” attributes. Second we express each cycle and each relevant restriction
from Assumptions 1 and 2 as simplified X and Q matrices (X and Q are defined in the proof
of Theorem 1). All possible matchings can be expressed as a linear combination of rows of
these matrices. From this we easily deduce which realizations of κ are ruled out.

Reduction to three attributes. All of our examples can be analyzed by partitioning
the attribute space into three disjoint and collectively exhaustive “groups,” A,B,C. All
attributes within a group are perfectly correlated, so we can represent them using three
grouped attributes, x = (xA, xB, xC).48 Since attributes are perfectly correlated within
groups, they will have identical differences in a given comparison (e.g. we have |xi − zi| =
|xj − zj|,∀i, j ∈ A). All influence-dominance relationships will be shared within a group
(e.g. (δ ⊒i δ

′) ⇔ (δ ⊒j δ′),∀i, j ∈ A). Therefore we can conduct all our analysis using
xA, xB, xC , where xAκAθA :=

∑
i∈A xiκiθi. Implications that we derive on a grouped attribute

will imply a disjunction over all attributes within the group (essentially, because we do not
know which attribute(s) within a group are responsible for the observed behavior). That is:
(xAκA = 1) =⇒

(∨
i∈A xiκi = 1

)
.

Applying Theorem 1 compactly. The proof of Theorem 1 shows how to represent
a dataset and influence-dominance relationship in terms of P , X, and Q matrices, and use
them to ask whether a given κ can rationalize the data. Condition 2 of the theorem tells us
the answer is no if and only if there exist vectors p, q such that [ pT qT ]

[
P X
0 Q

]
= 0. Condition

3 tells us that p is a cyclical selection and q is a matching.
In order to parsimoniously identify every κ that can be ruled out in this way, we will

write out the terms of the expression for an arbitrary κ, and ask for which κi values at least
one term must be nonzero. We use a number of tricks to simplify the process.

48So, A∪B ∪C = 1, . . . , n; and A∩B = A∩C = B ∩C = ∅. For example, if A = {1, 2, 3} we might have
xA = −1 ⇔ (x1, x2, x3) = (−1, 1,−1) and xA = 1 ⇔ (x1, x2, x3) = (1,−1, 1).
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A,
[
2
0
0

]
A,

[
0
2
0

]
A,

[
2
2
0

]
B,

[
2
0
0

]
B,

[
0
2
0

]
B,

[
2
2
0

]
C,

[
2
0
0

]
C,

[
0
2
0

]
C,

[
2
2
0

]
Right triangle 1


−2κAx

3
A 0 2κAx

3
A 0 −2κBx

3
B 2κBx

3
B 0 0 0


Right triangle 2 −2κAx̄

3
A 0 2κAx̄

3
A 0 −2κBx̄

3
B 2κBx̄

3
B 0 0 0

X∗ = Figure 8 −4κAx
4
A 0 4κAx

4
A 0 0 0 0 0 0

Convex scissor 1 −κAxAΥ 0 κAxAΥ −κBxBΥ 0 κBxBΥ −κCxCΥ 0 κCxCΥ
Convex scissor 2 −κAx̄AῩ 0 κAx̄AῩ −κBx̄BῩ 0 κBx̄BῩ −κC x̄CῩ 0 κC x̄CῩ[

2
2
0

]
⊒A

[
2
0
0

] 

−1 0 1 0 0 0 0 0 0


Q∗ =
[
2
2
0

]
⊒B

[
0
2
0

]
0 0 0 0 −1 1 0 0 0[

2
0
0

]
⊒C

[
2
2
0

]
0 0 0 0 0 0 1 0 −1

Dominance-k 0 0 0 Θ 0 −Θ 0 0 0

Notes: (1) Columns are labeled by attribute group (i ∈ {A,B,C}), and |x− z| ∈ {0, 2}3. (2) Row elements
of X∗ correspond to κi multiplied by the score. (3) Entries in Q∗ are derived from Assumptions 1 and 2. We
only include rows that restrict at least one row of X∗. (4) For scissors, Υ = sgn(y2 − y1) ∈ {−1, 1} equals
the sign of the evaluation change. (5) Θ ∈ {−1, 0, 1} captures the sign of the Dominance-k assumption
(Assumption 2). Θ = 0 if the assumption does not apply, Θ = 1 if influence is higher for shared attributes
(attribute k is shared), Θ = −1 if influence is higher for non-shared (k is non-shared).

Figure A1: Matrix representation of corollaries

First, we can ignore P , since in any solution, p is a cyclical selection and P ’s rows always
sum to zero in a cyclical selection. Thus we focus on X and Q.

Second, many comparisons δ ∈ {0, 2}n are never observed (i.e., are not in the dataset),
so appear in X as columns of zeros. We drop those columns. Similarly, Q will have many
rows that do not restrict any nonzero column in X. We eliminate those as well. We therefore
write X and Q with one column per observed realization of |x− z|.

Third, for a dataset consisting of a single cycle, we can reduce its X matrix to a single row
by summing the individual rows. This is because p is a cyclical selection and in a cyclical
selection every bundle must appear equally often on the left- and right-hand sides of the
selected inequalities. That means all pj terms must be equal for inequalities in the cycle.
When the dataset consists of multiple cycles we collapse each down to a single row.

We name the compressed X and Q matrices X∗ and Q∗ and show them in Figure A1.
Calculating scores: Entries in X∗ correspond to scores, which are the net of “wins” and

“losses” for each i and δ. We count a “win” for i, δ for each inequality j in which |xj−zj| = δ

and xj
i = 1, and for each inequality j in which |x′ − z′| = δ and x′j

i = −1 (i.e., a positive
value of xi appears on the LHS of an inequality, or a negative value on the RHS). “Losses”
correspond to the opposite case. So, the inequality u

(
[ 11 ] ,

[ −1
−1

])
> u ([ 11 ] , [

1
−1 ]) contributes

a win for 1, [ 22 ] and for 2, [ 22 ], and contributes a loss for 1, [ 02 ] and for 2, [ 02 ].
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Right triangle Let A = {i : x1
i ̸= x2

i }, B = {i : x2
i ̸= x3

i }, C = {i : x1
i = x3

i }. So A is the
set of non-shared attributes in |x1 − x2|, B is the set of non-shared attributes in |x2 − x3|,
A ∪ B is the set of non-shared attributes in |x1 − x3| (the “diagonal”), and C is the set
that are always shared. Because |x1 − x2|+ |x2 − x3| = |x1 − x3|, A,B,C are disjoint and
collectively exhaustive.

There are three inequalities in the dataset: u(x1,x2) > u(x2,x1), u(x2,x3) > u(x3,x2),
and u(x3,x1) > u(x1,x3). The comparisons are: |x1−x2| =

[
2
0
0

]
, |x2−x3| =

[
0
2
0

]
, and |x1−

x3| =
[
2
2
0

]
. To construct the X∗ matrix we need to compute the score for each i, |x− z|.

From the conditions defining the right triangle, we know that x1
A = −x2

A = −x3
A while

x1
B = x2

B = −x3
B and x1

C = x2
C = x3

C . Inequality 1 gives us two wins for A,
[
2
0
0

]
if x1

A = 1

and two losses if x1
A = −1. Thus the entry in column A,

[
2
0
0

]
equals 2κAx

1
A = −2κAx

3
A (since

x1
A = −x3

A). All other attributes are shared so have zero score.
Inequality 2 yields two wins for B,

[
0
2
0

]
if x2

B = 1 and two losses otherwise, so that
column’s entry is 2κBx

2
B = −2κBx

3
B (since x2

B = −x3
B). All other attributes are shared.

Inequality 3 gives us two wins for A,
[
2
2
0

]
if x3

A = 1 and two losses if x3
A = −1, so that

column’s entry is 2κAx
3
A. Inequality 3 gives us two wins for B,

[
2
2
0

]
if x3

B = 1 and two losses
if x3

B = −1, so so that column’s entry is 2κBx
3
B. All other attributes are shared.

Adding rows, we obtain “Right triangle 1” in Figure A1. Our dataset has just one cycle
so we can set p = 1 without loss of generality. Dropping columns that equal zero, we obtain:[

pT qT
] [

X∗
Q∗

]
=

[
−2κAx

3
A − q1 2κAx

3
A + q1 −2κBx

3
B − q2 2κBx

3
B + q2

]
,

where q1, q2 are the coefficients on the first and second rows of Q∗ respectively. There exist
q1, q2 ≥ 0 such that this vector equals 0 if and only if (κAx

3
A ≤ 0)∧ (κBx

3
B ≤ 0). This is false

if and only if: (
κAx

3
A = 1

)
∨
(
κBx

3
B = 1

)
⇔

∨
{i:x3

i ̸=x1
i }

(κix
3
i = 1),

where the last part follows from the definitions of A,B,x1,x3.

Figure 8 Let A = {i : x1
i ̸= x2

i }, B = {i : x1
i ̸= x3

i }, C = {i : x1
i = x4

i }. So A is the set of
non-shared attributes in |x1 − x2| and |x3 − x4|, B is the set of additional attributes that
are non-shared in |x2 −x3| and |x1 −x4| but were shared in |x1 −x2| and |x3 −x4|, A∪B

the set of all attributes that are non-shared in |x2 − x3| and |x1 − x4|, and C the set that
are shared in all comparisons. A,B,C are disjoint and collectively exhaustive.

The two comparisons are |x1−x2| = |x3−x4| =
[
2
0
0

]
, and |x2−x3| = |x1−x4| =

[
2
2
0

]
.

As with the right triangle, we populate the matrix X∗ by calculating wins and losses for
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each i, |x − z| combination. Once again we can set p = 1 and eliminate columns of zeros
without loss of generality, obtaining:[

pT qT
] [

X∗
Q∗

]
=

[
−4κAx

4
A − q1 4κAx

4
A + q1

]
,

where q1 is the coefficient on the first row of Q∗. This vector is nonzero if and only if:

(
κAx

4
A = 1

)
⇔

∨
{i:x3

i ̸=x4
i }

(κix
4
i = 1),

where the last part follows from the definitions of A,x3,x4.

Parallel right triangles Let A = {i : x1
i ̸= x2

i } = {i : x̄2
i ̸= x̄3

i }, B = {i : x2
i ̸= x3

i } = {i :
x̄1
i ̸= x̄2

i }, C = {i : x1
i = x3

i } = {i : x̄1
i = x̄3

i }. In words, A is the set of non-shared attributes
in |x1 − x2| and |x̄2 − x̄3|, B is the set of non-shared attributes in |x2 − x3| and |x̄1 − x̄2|,
while C attributes are always shared.49 A,B,C are disjoint and collectively exhaustive.

We populate Right Triangle 2’s row in X∗ exactly as we did for Right Triangle 1. When
the dataset consists of a pair of parallel right triangles, a cyclical selection consists of p1 ≥ 0

copies of the first and p2 ≥ 0 copies of the second, giving us (ignoring zeros):[
pT qT

] [
X∗
Q∗

]
=

[
−WA WA −WB WB

]
(4)

WA = 2κA(p1x
3
A + p2x̄

3
A) + q1 = 2κA(p1 − p2)x

3
A + q1 (5)

W2 = 2κB(p1x
3
B + p2x̄

3
B) + q2 = 2κB(p1 + p2)x

3
B + q2, (6)

where q1, q2 are the coefficients on the first and second rows of Q∗, respectively. The second
steps in (5) and (6) use x3

A = −x̄3
A, and x3

B = x̄3
B.50 (4) is non-zero if and only if:

(
κA(p1 − p2)x

3
A > 0

)
∨
(
κB(p1 + p2)x

3
B > 0

)
.

This condition must hold for all ps. Observe that it is sufficient to check the case where
p1 = p2 (where the cyclical selection contains an equal number of each cycle). Then, the

49While C attributes are always shared within a triangle, they could take different realizations between
triangles; i.e. we could have xC ̸= x̄C .

50Derivation: Condition 1 in the definition of the parallel right triangle (x2 − x3 = x̄1 − x̄2) allows us to
pin down the values of the non-shared attributes in set B: (x2

B = x̄1
B) and (x3

B = x̄2
B) (to see this note that

if x2
B−x3

B = 2, it must be that x2
B = 1 and x3

B = −1). Condition 2 in the definition (x1−x2 = −(x̄2− x̄3))
allows us to pin down the values of the non-shared attributes in set A: (x1

A = −x̄2
A) and (x2

A = −x̄3
A).

Finally, the definitions of A, B, and C imply x3
A = x2

A = −x1
A, x3

B = −x2
B = −x1

B , x̄3
A = −x̄2

A = −x̄1
A, and

x̄3
B = x̄2

B = −x̄1
B . Substitution yields x3

A = −x̄3
A, and x3

B = x̄3
B .
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condition reduces to κBx
3
B = 1. By the definition of set B we conclude that a pair of parallel

right triangles reveals: ∨
i:x3

i ̸=x2
i

(x3
iκi = 1).

Convex scissor without and with Dominance-k. Let A = {i : xi ̸= z1i }, B = {i : z1i ̸=
z2i }, C = {i : xi = z2i }. So A is the set of non-shared attributes in the first comparison, B
is the set of attributes that are non-shared in the second comparison but shared in the first,
A∪B the full set that vary in the second comparison, and C the set that are always shared.
A,B,C are disjoint and collectively exhaustive.

A scissor can be written as a single inequality (see footnote 46). We construct its row
in X∗ by computing scores as usual. If y2 > y1 we have u(x, z2) > u(x, z1). The left-hand
side corresponds to |x − z2| =

[
2
2
0

]
, giving us a win in column i,

[
2
2
0

]
if xi = 1 and a loss

otherwise. The right-hand side corresponds to |x − z1| =
[
2
0
0

]
, giving us a loss in column

i,
[
2
0
0

]
if xi = 1 and a win otherwise. If y2 < y1 the LHS and RHS are switched. Defining

Υ = sgn(y2 − y1), we enter κixiΥ in the columns for comparison
[
2
2
0

]
, and −κixiΥ in the

columns for comparison
[
2
0
0

]
. Setting p = 1 (wlog), and ignoring zeros, we obtain:

[
pT qT

] [
X∗
Q∗

]
=

[
−WA WA −WB WB −WC WC

]
(7)

WA = κAxAΥ+ q1

WB = κBxBΥ−Θq4

WC = κCxCΥ− q3.

q1, q3, q4 are the coefficients on the first, third, and fourth rows of Q∗. Θ encodes the
Dominance-k assumption (Assumption 2): Θ = 0 if there is no attribute k for which the
assumption holds, Θ = 1 if influence is higher for shared attributes (k is shared), Θ = −1 if
influence is higher for non-shared attributes (k is non-shared).

When Θ = 0, (7) is non-zero if and only if:

(κAxAΥ = 1) ∨ (κBxBΥ ̸= 0) ∨ (κCxCΥ = −1) ,

while when Θ ̸= 0, (7) is non-zero if and only if:

(κAxAΥ = 1) ∨ (κBxBΥ = −Θ) ∨ (κCxCΥ = −1) .

Expanding these expressions using the definitions of A,B,C,Υ and Θ gives the results.
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Parallel convex scissors without and with Dominance-k. Conditions 1 and 2 in the
definition imply |x− y1| = |x̄− ȳ1| and |x− y2| = |x̄− ȳ2|. Let: A = {i : xi ̸= z1i } = {i :
x̄i ̸= z̄1i }, B = {i : z1i ̸= z2i } = {i : z̄1i ̸= z̄2i }, and C = {i : xi = z2i } = {i : x̄i = z̄2i }.

So, A is the set of non-shared attributes in each scissor’s the first comparison, B is the
set of attributes that are non-shared in their second comparisons but shared in the first,
A ∪ B the full set that vary in the second comparisons, and C the set that are always
shared. A,B,C are disjoint and collectively exhaustive. The values of x, x̄, sgn(y2−y1) and
sgn(ȳ2 − ȳ1) are unrestricted, so there are many possible combinations.

A cyclical selection consists of p1 ≥ 0 copies of the first scissor and p2 ≥ 0 copies of the
second, giving us (ignoring zero elements):[

pT qT
] [

X∗
Q∗

]
=

[
−WA WA −WB WB −WC WC

]
(8)

WA = κA(p1xAΥ+ p2x̄AῩ) + q1

W2 = κB(p1xBΥ+ p2x̄BῩ)−Θq4

W3 = κC(p1xCΥ+ p2x̄CῩ)− q3,

q1, q3, q4 are the coefficients on the first, third, and fourth rows of Q∗. Θ encodes the
Dominance-k assumption (Assumption 2) as before. Υ = sgn(y2−y1) and Ῡ = sgn(ȳ2− ȳ1)

capture the directions in which each evaluation changes when the comparator changes.
By a similar argument to the parallel right triangles, it is sufficient to check the case

where p1 = p2. In other words, we can without loss of generality consider only the cyclical
selection consisting of exactly one copy of each scissor (p1 = p2 = 1).

When Θ = 0, (8) is non-zero if and only if:

(
κA(xAΥ+ x̄AῩ) = 2

)
∨
(
κB(xBΥ+ x̄BῩ) ̸= 0

)
∨
(
κC(xCΥ+ x̄CῩ) = −2

)
,

while when Θ ̸= 0, (8) is non-zero if and only if:

(
κA(xAΥ+ x̄AῩ) = 2

)
∨
(
κB(xBΥ+ x̄BῩ) = −2Θ

)
∨
(
κC(xCΥ+ x̄CῩ) = −2

)
.

Expanding the expressions using the definitions of A,B,C,Υ, Ῡ and Θ gives the results.
The term corresponding to i ∈ {A,B,C} is eliminated if xiΥ = −x̄iῩ, that is, if either (i)

the second scissor has an opposite realization of xi but evaluation moves in the same direction,
or (ii) the second scissor has an identical realization of xi, but evaluation moves in the
opposite direction. Some parallel scissors eliminate attribute group B (where a single scissor
is indeterminate), enabling us to draw precise conclusions without invoking Assumption 2.
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A.3 Proofs for Section 3 (Foundations)

In proving some of these results we make use of an additional lemma that we call “Sums and
Differences,” which we state and prove first. Recall that S|x−z| = {i : |xi − zi| = 0}.

Lemma 2 (Sums and Differences). Suppose we observe two linear combinations of n inde-
pendent Normal variables (“weights”), with +1 or −1 coefficients (“attributes”):

[
ȳx

ȳz

]
︸ ︷︷ ︸

y

=

[
x1 . . . xn

z1 . . . zn

]
︸ ︷︷ ︸

X


w1

...
wn


︸ ︷︷ ︸

w

xi, zi ∈ {−1, 1},w = N(0, diag(σ2
1, . . . , σ

2
n)),

The Bayesian posterior for unobserved weight wi, given observed y will be:

E[wi|y] =

xi
σ2
i∑

j∈S σ2
j

ȳx+ȳz

2
, i ∈ S|x−z|

xi
σ2
i∑

j ̸∈S σ2
j

ȳx−ȳz

2
, i ̸∈ S|x−z|

.

The posterior for the weight on a shared attribute depends only on the sum ȳx+ ȳz, and the
posterior for the weight on a non-shared attribute depends only on the difference ȳx − ȳz.

Proof of Lemma 2. First we assume there exists at least one shared and one non-shared
attribute (i.e., x ̸= z and x ̸= −z). Given two multivariate Normals, a and b, with
covariance V ar [ ab ] =

[
Σa Σa,b

ΣT
a,b Σb

]
we can write the conditional expectation: E[a|b] = E[a] +

Σa,bΣ
−1
b (b− E[b]). In our case this implies:

E[w|y] = Σw,yΣ
−1
y y (9)

with components as follows:

Σy = XΣwX
T =

[ ∑
i x

2
iσ

2
i

∑
i xiziσ

2
i∑

i xiziσ
2
i

∑
i z

2
i σ

2
i

]
=

[∑
i∈S σ

2
i +

∑
i ̸∈S σ

2
i

∑
i∈S σ

2
i −

∑
i ̸∈S σ

2
i∑

i∈S σ
2
i −

∑
i ̸∈S σ

2
i

∑
i∈S σ

2
i +

∑
i ̸∈S σ

2
i

]

Σ−1
y y =

1

4
∑

i∈S σ
2
i

∑
i ̸∈S σ

2
i

(∑i∈S σ
2
i +

∑
i ̸∈S σ

2
i

)
ȳx +

(
−
∑

i∈S σ
2
i +

∑
i ̸∈S σ

2
i

)
ȳz(

−
∑

i∈S σ
2
i +

∑
i ̸∈S σ

2
i

)
ȳx +

(∑
i∈S +σ2

i

∑
i ̸∈S σ

2
i

)
ȳz


=

1

4

 ȳx+ȳz∑
i∈S σ2

i
+ ȳx−ȳz∑

i ̸∈S σ2
i

ȳx+ȳz∑
i∈S σ2

i
− ȳx−ȳz∑

i̸∈S σ2
i
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Σw,y = ΣwX
T =


x1σ

2
1 z1σ

2
1

...
...

xnσ
2
n znσ

2
n


Thus, given (9), we obtain:

E[wi|y] =
1

4

 ȳx+ȳz∑
i∈S σ2

i
+ ȳx−ȳz∑

i ̸∈S σ2
i

ȳx+ȳz∑
i∈S σ2

i
− ȳx−ȳz∑

i ̸∈S σ2
i

[
xiσ

2
i

ziσ
2
i

]
=

xi
σ2
i∑

j∈S σ2
j

ȳx+ȳz

2
, i ∈ S

xi
σ2
i∑

j ̸∈S σ2
j

ȳx−ȳz

2
, i ̸∈ S

Where the last step uses xi + zi = 2xi1{i ∈ S} and xi − zi = 2xi1{i ̸∈ S}.
The same formula also applies to the cases of all shared attributes (x = z) and all non-

shared attributes (x = −z). We cannot use equation (9) because X does not have full rank
so Σy is not invertible. If all attributes are shared we have a Normal updating problem with
a single observable, ȳx = ȳz, and each wi is updated in proportion to its share of the total

variance. So, E[wi|y] = xi
σ2
i∑n

j=1 σ
2
j

ȳx = xi
σ2
i∑

j∈S σ
2
j

ȳx + ȳz

2
. If all attributes are non-shared

then ȳx = −ȳz and we have E[wi|y] = xi
σ2
i∑n

j=1 σ
2
j
ȳx = xi

σ2
i∑

j ̸∈S σ2
j

ȳx−ȳz

2
. Thus both correspond

to the statement of the Lemma.

Proof Strategy for Propositions 2–6. To prove Propositions 2–5 we will show that the
utility function defined in each foundation can be expressed as an Implicit Preferences utility
function. In each case, θi takes one of two functional forms depending on whether i is shared
or non-shared:

θi(|x− z|) =

θSi (|x− z|) , i ∈ S

θNi (|x− z|) , i ̸∈ S.

To verify Dilution we show that θi(|x− z|) is weakly increasing as the set of attributes that
have the same status as i grows. We can study the properties of θSi and θNi separately, since
i does not change status in a given dilution. We therefore show that θSi (|x − z|) weakly
increases as the set of shared attributes grows (in a superset sense), and that θNi (|x − z|)
weakly increases as the set of non-shared attributes grows.

To prove Proposition 6, for each foundation we write out the change in θi when i’s status
becomes the same as k’s, and show it is weakly positive.
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Proof of Proposition 2. First, note that uCP (x, z) can be rearranged to satisfy equation
(1) (using the fact that λi = sgn(λi)|λi|):

uCP (x, z) = g(x) +
n∑

i=1

xiλi︸ ︷︷ ︸
v(x)

+
n∑

i=1

xi (−sgn(λi))︸ ︷︷ ︸
κi

θi(|x− z|)

θi(|x− z|) =

{
θSi (|x− z|) = |λi| , i ∈ S

θNi (|x− z|) = |λi|(1− 1{∀j, (λj = 0) ⇒ (j ∈ S)}) , i ̸∈ S.

θSi is weakly increasing as the set of shared attributes grows since θSi is a constant (rules
are only applied to non-shared attributes). We need to show that θNi is weakly increasing
as the set of non-shared attributes grows. Let |x− z| be a dilution of |x− z| with respect
to attribute i. Consider the set of attributes that are shared under |x − z| and become
non-shared under |x − z′|, i.e. D = {j : (j ∈ S|x−z|) ∧ (j ̸∈ S|x−z′|)}. If all of them
are governed by a rule (∀j ∈ D,λj ̸= 0) then the rule-applying function is unaffected, so
θNi (|x− z′|) = θNi (|x− z|). If one or more is not governed by a rule (∃j ∈ D : λj = 0), then
1{∀j, (λj = 0) ⇒ (j ∈ S|x′−z′|)} = 0, so θNi (|x− z′|) = |λi| ≥ θNi (|x− z|).

Proof of Proposition 3. First we derive an explicit solution for the observer’s posterior.

Lemma 3. Suppose a naïve observer sees the decision maker choose x from {x, z}, x ̸= z.
Their posterior over weight wi can be written as:

E

[
wi

∣∣∣∣ n∑
i=1

xiwi >
n∑

i=1

ziwi

]
= 1{i ̸∈ S} xiσ

2
i√∑

j ̸∈S σ
2
j

ϕ(0)

1− Φ(0)
,

where ϕ and Φ are the standard Normal density and cumulative density functions.

Proof of Lemma 3. The expectation of a Normally-distributed variable, b, conditioning
on another Normal variable, a, exceeding some threshold ā can be written as:

E[b|a > ā] = µb +
Cov(a, b)√
V ar(a)

ϕ( ā−µa√
V ar(a)

)

1− Φ( ā−µa√
V ar(a)

)
.
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In our model each wi is Normally distributed, implying the difference in intrinsic utility
between x and z will also be Normal, and so given x is chosen over z we have:

E

[
wi

∣∣∣∣ n∑
j=1

wj(xj − zj) > 0

]
= E[wi] +

Cov(wi,
∑n

j=1wj(xj − zj))√
V ar(

∑n
j=1 wj(xj − zj))

ϕ(0)

1− Φ(0)

=
(xi − zi)σ

2
i√∑n

j=1(xj − zj)2σ2
j

ϕ(0)

1− Φ(0)

= 1{i ̸∈ S} xiσ
2
i√∑

j ̸∈S σ
2
j

ϕ(0)

1− Φ(0)
,

since (xi − zi) = 2xi × 1{i ̸∈ S} and (xi − zi)
2 = 4× 1{i ̸∈ S}.

Three things are worth noting. First, the observer divides attribution for the choice
among the weights wi on non-shared attributes, attributing more to those with larger variance
σ2
i . Second, the magnitude of the belief change on a given non-shared attribute i is decreasing

as the set of non-shared attributes grows, i.e. as the comparison becomes more dilute with
respect to i. Third, they do not update at all about weights on shared attributes, since
choice is uninformative about those weights.

Using Lemma 3 and the fact that λi = sgn(λi)|λi|, we can rearrange uSC to satisfy (1):

uSC(x, z) =
n∑

i=1

xi

(
wi + λiσi

ϕ(0)

1− Φ(0)

)
︸ ︷︷ ︸

v(x)

+
n∑

i=1

xi (−sgn(λi))︸ ︷︷ ︸
κi

θi(|x− z|)

θi(|x− z|) =

θSi (|x− z|) = |λi|σi
ϕ(0)

1−Φ(0)
, i ∈ S

θNi (|x− z|) = |λi|σi

(
1− σi√∑

j ̸∈S σ2
j

)
ϕ(0)

1−Φ(0)
, i ̸∈ S.

We need to show that θS and θN are weakly increasing as the sets of shared and non-shared
attributes grow respectively. θS is a constant. It is easy to see that θN increases as we add
additional non-shared attributes. This concludes the proof.

Next, we show that reporting uSE is an optimal strategy in the signaling-evaluation game:

Proof of Lemma 1. Define the residual evaluations ȳx, ȳz, after subtracting components
which are common knowledge. We have:

ȳx = yx − g(x)−
n∑

i=1

xiλi
σ2
i

1{i ∈ S}
∑

j∈S σ
2
j + 1{i ̸∈ S}

∑
j ̸∈S σ

2
j

=
n∑

i=1

xiwi

14



Next, we show that player 1’s strategy yx = uSE(x, z), yz = uSE(z,x) is optimal assuming
that player 2’s strategy is:

ŵi(y
x, yz) =

xi
σ2
i∑

j∈S σ2
j

ȳx+ȳz

2
, i ∈ S

xi
σ2
i∑

j ̸∈S σ2
j

ȳx−ȳz

2
, i ̸∈ S

Taking first-order conditions of U1 with respect to yx and yz gives us the optimal reports:

yx(x, z) = g(x) +
n∑

i=1

xiwi +
n∑

i=1

λi
∂ŵi(y

x, yz)

∂yx

= g(x) +
n∑

i=1

xiwi +
n∑

i=1

xiλi
σ2
i

1{i ∈ S}
∑

j∈S σ
2
j + 1{i ̸∈ S}

∑
j ̸∈S σ

2
j

yz(z,x) = g(z) +
n∑

i=1

ziwi +
n∑

i=1

ziλi
σ2
i

1{i ∈ S}
∑

j∈S σ
2
j + 1{i ̸∈ S}

∑
j ̸∈S σ

2
j

.

Hence yx(x, z) = uSE(x, z) and yz(z,x) = uSE(z,x) as stated in the proposition.
Next we show that player 2’s strategy is optimal, given player 1’s. Taking first order condi-
tions of U2, and using Lemma 2, we obtain the desired result:

ŵi(y
x, yz) = E[wi|yx, yz] = E[wi|ȳx, ȳz] =

xi
σ2
i∑

j∈S σ2
j

ȳx+ȳz

2
, i ∈ S

xi
σ2
i∑

j ̸∈S σ2
j

ȳx−ȳz

2
, i ̸∈ S.

Proof of Proposition 4. Using the fact that λi = sgn(λi)|λi| we can express uSE(|x−z|)
in a form that satisfies (1):

uSE(x, z) = g(x) +
n∑

i=1

(wi + λi)xi︸ ︷︷ ︸
v(x)

+
n∑

i=1

xi (−sgn(λi))︸ ︷︷ ︸
κi

θi(|x− z|)

θi(|x− z|) =

θSi (|x− z|) = |λi|
(
1− σ2

i∑
j∈S σ2

j

)
, i ∈ S

θNi (|x− z|) = |λi|
(
1− σ2

i∑
j ̸∈S σ2

j

)
, i ̸∈ S.

It is easy to see that θS and θN are weakly increasing as we add additional shared and
non-shared attributes respectively.

Proof of Proposition 5. The result in brief: when attributes 1 and 2 have different
status, Agent 2 can perfectly infer Agent 1’s private information (λ1, λ2) from their reports
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(f̂(x), f̂(z)). When they have the same status, Agent 2 can only infer a weighted “average”
λ. All other attributes have no effect because agent 1 has no private information about
them. This means dilution will be satisfied: the influence of attribute i (weakly) increases
when the set of attributes with the same status as i grows.51

Agent 1’s reported value for x is f̂(x) = E[f(x)|λ]. Given agent 1’s prior (E[π] = 1),
we have

f̂(x) = g(x) +
n∑

i=1

xiλiE[πi] = g(x) +
n∑

i=1

xiλi = g(x) + x1λ1 + x2λ2.

where the final step follows from σ2
i = 0, ∀i > 2 (implying λi = 0,∀i > 2).

Define the residual value by subtracting common-knowledge components: ¯̂
f(x) = f̂(x)−

g(x) = x1λ1 + x2λ2. We can then use Lemma 2 to express Agent 2’s posterior on λi in a
simple form (we use −i to denote the other attribute j ∈ {1, 2} \ i):

E[λi|f̂(x), f̂(z)] = E[λi| ¯̂f(x), ¯̂f(z)] =

xi
σ2
i∑

j∈S σ2
j

(xi+zi)λi+(x−i+z−i)λ−i

2
, i ∈ S

xi
σ2
i∑

j ̸∈S σ2
j

(xi−zi)λi+(x−i−z−i)λ−i

2
, i ̸∈ S

=

xi
σ2
i

σ2
i +σ2

−i
(xiλi + x−iλ−i) , δi = δ−i

λi , δi ̸= δ−i

Substituting this into uIA(x, z) = E[f(x)|π, f̂(x), f̂(z)], and rearranging, we obtain:

E[f(x)|π, f̂(x), f̂(z)] =

g(x) + x1λ1
π1σ2

1+π2σ2
2

σ2
1+σ2

2
+ x2λ2

π1σ2
1+π2σ2

2

σ2
1+σ2

2
, δi = δ−i

g(x) + x1λ1π1 + x2λ2π2 , δi ̸= δ−i

We can see that if attributes 1 and 2 have the same status (both shared or both non-shared)
then both are weighted by the average π (i.e. π1σ2

1+π2σ2
2

σ2
1+σ2

2
). If they do not have the same status

51When all σ2
i can be nonzero, it is possible to show that Agent 2’s utility can be written as:

uIA(x, z) = g(x) +
∑
i∈S

xiλi

∑
j∈S πjσ

2
j∑

j∈S σ2
j

+
∑
i ̸∈S

xiλi

∑
j ̸∈S πjσ

2
j∑

j ̸∈S σ2
j

.

The weight on xiλi is a weighted average πj across all j with the same status. Thus, Dilution is not guaranteed
to hold, because this average can either increase or decrease when the set of same-status attributes grows.
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there is full revelation and each is weighted by its own π. We can therefore write:

uIA(x, z) = g(x) +
∑
i

xiλiπi︸ ︷︷ ︸
v(x)

+
∑

i∈{1,2}

xi sgn((π−i − πi)λi)︸ ︷︷ ︸
κi

θi(|x− z|)

θi(|x− z|) =

|(π−i − πi)λi|
σ2
−i

σ2
i +σ2

−i
1{−i ∈ S} , i ∈ S

|(π−i − πi)λi|
σ2
−i

σ2
i +σ2

−i
1{−i ̸∈ S} , i ̸∈ S

We can see that θi obeys dilution because it equals zero when attributes 1 and 2 have different
status, and is weakly positive when they have the same status.

Proof of Proposition 6. Given the conditions in the Proposition, we need to show, for
two comparisons |x − z| and |x′ − z′|, where i and k have the same status in |x − z|, and
do not have the same status in |x′ − z′|, that θi(|x− z|) ≥ θi(|x′ − z′|).

Ceteris Paribus. θi(|x− z|) can be written as:

θi(|x− z|) = |λi|
(
1− 1{i ̸∈ S|x−z|}1{∀j, (λj = 0) ⇒ (j ∈ S|x−z|)}

)
Observe that (1) (i ∈ S|x−z|) ⇒ (1{i ̸∈ S|x−z|} = 0). (2) Since i and k have the same
status in |x − z|, we have that (i ̸∈ S|x−z|) ⇒ (k ̸∈ S|x−z|). Since by assumption λk = 0,
(k ̸∈ S|x−z|) ⇒ (1{∀j, (λj = 0) ⇒ (j ∈ S|x−z|)} = 0) (i.e., if k is non-shared, the rules are
turned off, because k is not itself governed by a rule). Putting these together, we obtain
that θi(|x− z|) = |λi|. Therefore, we can write:

θi(|x− z|)− θi(|x′ − z′|) = |λi|1{i ̸∈ S|x′−z′|)}1{∀j, (λj = 0) ⇒ (j ∈ S|x′−z′|)} ≥ 0.

Signaling-evaluation. We can write:

θi(x, z)− θi(x
′, z′) = |λi|σ2

i

(
Z(x, z)− Z(x′, z′)

Z(x, z)Z(x′, z′)

)
where Z(x, z) = 1{i ∈ S(x,z)}

∑
j∈S(x,z) σ2

j + 1{i ̸∈ S(x,z)}
∑

j ̸∈S(x,z) σ2
j . The denominator is

strictly positive. Since k has the same status as i in (x, z) and not in (x′, z′), σ2
k ≥

∑
i ̸=k σ

2
i ,

implies Z(x, z)− Z(x′, z′) ≥ 0. Hence θi(x, z)− θi(x
′, z′) ≥ 0.

Implicit associations. All attributes j > 2 have zero influence so trivially satisfy the
assumption. Consider attribute i ∈ {1, 2}. Since k ∈ {1, 2} as well, the influence function
tells us that i has zero influence when i and k have different status, and weakly positive
influence when they have the same status.

17



A.4 Application to implicit risk and social preferences

Data access: For Exley (2016a) we use the replication data at https://doi.org/10.1093/
restud/rdv051. For Ahumada et al. (2022) we use data kindly shared by the authors.
Data structure: Each experiment proceeds in three steps.

Normalization choice. For each participant, elicit using a choice list the smallest sure
payment $X ∈ {0, 2, . . . , 30} to a third party (“charity”) that is preferred to $10 for self.

Lotteries. Using X, construct a sequence of participant-specific simple lotteries. These
pay out with probability P ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95} (Exley) or P ∈ {0.05,
0.25, 0.75, 0.95} (Ahumada). Self lotteries, denoted by P S, pay $10 to self. Charity lotteries,
denoted by PC , pay $X to charity.

Choice lists. Elicit, using choice lists, preferences between each lottery and 21 different
sure payoffs to self or to charity. We index these by t = 0, ..., 20. The sure payments are
Y S
t = (0, 0.50, ..., 10) for self lotteries and Y C

t = (0,X/20, ..., X) for charity lotteries.
A bundle has three basic attributes: Recipient (Self/Charity), Prize, and Probability.

Assumptions. Exley’s null hypothesis, standard risk preferences, assumes two properties
of utility. We will make use of the same assumptions to do two things. First, we represent
the choice data in a space of two binary attributes: Social ∈ {Selfish, Generous} and Risk ∈
{Safe, Risky}. We construct the space so under Exley’s null hypothesis we would expect the
decision maker to be close to indifferent in all choices (“ambivalence”, see Section 4). Second,
we impute some choices that are not observed in the data.

The first property is linearity in payoffs, meaning that preferences over sure payoffs are
preserved under linear rescaling. So, if the participant is indifferent between $y for Charity
and $y′ for Self, she is also indifferent between $yL for Charity and $y′L for Self, for L ≥ 0.

Linearity in payoffs plays an important role in Exley’s analysis. Her tests involve compar-
ing certainty equivalents of Self and Charity lotteries, measured in terms of sure payments
to Self and Charity. To say that the participant values a given lottery more in dollars to Self
than in dollars to Charity, Exley needs to be able to rank certainty equivalents measured in
these units. Linearity in payoffs allows her to do so.

The second assumption is that preferences over bundles are preserved under linear rescal-
ing of probabilities, so we refer to it as separability in probabilities. If the participant is
indifferent between $y for Charity and $y′ for Self, she is also indifferent between $y for
Charity with probability p and $y′ for Self with probability p, for p ∈ [0, 1] (since all lotteries
have exactly one non-zero prize, the assumption does not require linearity in probabilities).

Constructing a binary attribute space with “ambivalence.” We need to transform
the data for two reasons. First, all else equal, we would expect the participant to prefer
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Self to Charity, and larger Prizes or Probabilities to smaller. So we cannot expect the
participant to be close to indifferent (“ambivalence”) in choice sets that vary on just one
of these dimensions. Second, Prize and Probability are multivalued, while our framework
requires binary attributes.

Define a binary variable c ∈ {0, 1} equal to one if the Recipient is Charity, and denote
the Prize by y and Probability by p. Ignoring wealth, the utility of a decision maker who
satisfies standard risk preferences can be written as v(c, y, p) = π(p)v

(
y

1+λc

)
. Linearity in

payoffs is captured by λ. The participant is indifferent between y to Self and (1 + λ)y to
Charity. Separability in probabilities is captured via the probability weighting function π(p).
Preferences between two same-probability lotteries do not depend on p. To these, we add
Constant Relative Risk Aversion (CRRA): v(y) = yα, which gives us utility function (10).

v(c, y, p) = π(p)

(
y

1 + λc

)α

. (10)

Our approach amounts to selecting choices from the choice lists that can be described by two
binary attributes where the decision maker is plausibly close to indifferent according to (10).
We call them Social ∈ {Selfish, Generous}, and Risk ∈ {Safe, Risky}. We do the following:

First, we analyze preferences within a set of choice lists defined by a given lottery prob-
ability P . We cannot make comparisons across different P s, because such choices are not
observed, so we analyze choices within each value of P .52 Such a space contains two proba-
bility values: lotteries with probability P , and sure payoffs with probability 1.

Second, we divide up the Prize dimension, so that Self prizes are different to Charity
prizes, and sure prizes are different to risky ones, in such a way that ambivalence plausibly
holds. In essence we ensure that an observer who believed the participant maximizes (10)
would expect them to be close to indifferent. Consider the self lottery (0, 10, P ) that pays
$10 to Self with probability P . Equation (10) implies the following utilities are equal:

v (0, 10, P )︸ ︷︷ ︸
Self lottery

= v (1, (1 + λ)10, P )︸ ︷︷ ︸
Charity lottery

= v
(
0, π(P )

1
α10, 1

)
︸ ︷︷ ︸

Self sure payoff

= v
(
1, (1 + λ)π(P )

1
α10, 1

)
︸ ︷︷ ︸

Charity sure payoff

(11)

Our approach will be to focus on choices defined by two scaling parameters, L and R(P ),
such that Charity prizes are an L-multiple of self prizes, and sure prizes are an R(P )-multiple
of risky prizes. So, our binary attribute space consists of: (1) the Self lottery paying $10

with probability P , (2) the Charity lottery paying $10L with probability P , (3) the Self sure
payment of $10R(P ), and (4) the Charity sure payment of $10LR(P ). Ambivalence holds if

52We can think of this as multiple “slices” of a larger binary space with one attribute for each value of P .
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the observer believes L ≈ 1 + λ and R(P ) ≈ π(P )
1
α .

We calibrate L using the initial normalization choice in the experiment: L := X/10 (which
is the rate at which Exley compares self and charity payoffs). X is the smallest payment to
charity that was chosen over $10 to self, from which we infer X/10 > 1+λ > X−2/10. Linearity
in payoffs implies that the participant slightly prefers any payoff LY to charity over Y to
self, but is close to indifferent, consistent with the idea of “ambivalence.”

We calibrate R(P ) using average behavior across participants, such that a participant
with “average” risk aversion would be expected to be indifferent between lotteries and sure
payoffs. Specifically, we compute the mean “switch point” in (1) choices between self lotter-
ies/self sure payoffs and (2) charity lotteries/charity sure payoffs, measured as a fraction of
the lottery prize, and set R(P ) equal to the mean of these two values. We do this separately
by experiment and value of P . Thus, for probability P , the four two-attribute bundles are:53

(Selfish, Risky) = (0, 10, P ) (Self lottery)
(Generous, Risky) = (1, 10L, P ) (Charity lottery)
(Selfish, Safe) = (0, 10R(P ), 1) (Self sure payoff)
(Generous, Safe) = (1, 10LR(P ), 1) (Charity sure payoff)

In any given choice list, we code the participant as choosing the lottery if their switch
point exceeds the value implied by ambivalence, otherwise we code them as choosing the sure
payoff. So, in a choice between (Selfish, Risky) and (Selfish, Safe) we code them as choosing
the Risky bundle if they valued the lottery greater than 10R(P ). In a choice between (Selfish,
Risky) and (Generous, Safe) they choose the Risky bundle if they valued the lottery greater
than 10LR(P ).54

Imputing non-observed choices. To identify implicit Social preferences we need to ob-
serve choices where this attribute is non-shared while Risk is shared, but the data do not
contain such choices. However, the observed calibration choice ($X to charity is preferred to
$10 to self), plus linearity in payoffs implies that $LY to charity is preferred to $Y to self,
for all Y ≥ 0. We use this to impute the choice (Generous, Safe) ≻ (Selfish, Safe).

Our calibration of the binary attribute space is constrained by the lotteries that we
observe, whose prizes Exley also calibrated using X (that is, charity lotteries pay X = 10L

and self lotteries pay 10). Thus we cannot examine payoffs that vary in other proportions,
and therefore cannot observe or impute a choice set where (Selfish, Safe) ≻ (Charity, Safe).

53The CRRA assumption implies that (the log of) (10) can be written as a separable function of the binary

attributes Social and Risk, weighted by ln
(
1+λ
L

)
and ln

(π(P )
1
α

R(P )

)
respectively.

54Exley’s analysis uses the midpoints between just-rejected and just-accepted payoffs to approximate
certainty equivalents (i.e. points of indifference) of different lotteries. Our analysis uses the observed choices
only, so is expressed in terms of strict preferences.
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Table A1: Example datasets from from Exley sample

Lottery win probability P

Example 0.05 0.10 0.25 0.5 0.75 0.9 0.95 Type classification

1 – – – – (e) (c) (c) Pro-Self only
2 (e) (e) (e) (e) (e) (e) (e) Pro-Safe OR Self
3 – (a) – (d) (b) (b) (b) Inconsistent
4 (b) (e) – – – (e) (e) Pro-Safe only
5 – (a) – (d) (e) (e) – Pro-Risky and Self

We show five participants from Exley’s sample, selected to illustrate typical datasets that we observe. For
each P we show the observed cycle type from Figure 6, if any, and the final column shows the participant’s
type classification.

Table A2: Frequencies of different cycles in Exley & Ahumada et al. datasets

Cycle Exley Exley Ahumada Pooled Random

7 probabilities 4 probabilities 4/7 probabilities

Pro-Risky (a) 0.025
(0.007)

0.026
(0.009)

0.018
(0.009)

0.023
(0.006)

0.063

Pro-Safe (b) 0.078
(0.016)

0.081
(0.018)

0.045
(0.014)

0.069
(0.012)

0.063

Pro-Selfish (c) 0.093
(0.017)

0.105
(0.021)

0.067
(0.016)

0.086
(0.013)

0.062

Pro-Self/Risky (d) 0.143
(0.020)

0.119
(0.020)

0.103
(0.023)

0.132
(0.016)

0.125

Pro-Self/Safe (e) 0.203
(0.026)

0.218
(0.029)

0.188
(0.029)

0.199
(0.021)

0.125

No cycle (f) 0.458
(0.036)

0.451
(0.037)

0.580
(0.040)

0.492
(0.029)

0.563

Participants 86 86 56 142
This table shows the frequency of each type of cycle in our analysis of data from Exley (2016) and Ahumada et al. (2022). Standard

errors in parentheses are clustered at the participant level. First column shows results for all seven values of P in Exley’s data.
Columns 2 and 3 restrict to P ∈ {.05, .25, .75, .95} for comparability. Column 4 uses all available data, and column 5 simulates
random choice for seven and four probabilities respectively in proportion to study sample sizes. Statistical tests. Joint test
of equality between Exley and Ahumada proportions (restricted to 4 probabilities): p = 0.169. Equality between rows in pooled
dataset: p

(
a = b = c

)
< .001, p

(
d = e

)
= 0.015. Joint test versus random choice (pooled dataset): p < .001.
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Table A3: Frequencies of different types in Exley & Ahumada et al. datasets, robust version

Type Exley Exley Ahumada Pooled Random

7 probabilities 4 probabilities 4/7 probabilities

Inconsistent (i) 0.023
(0.016)

0.000
(.)

0.000
(.)

0.014
(0.010)

0.084

Pro-Risky only (ii) 0.035
(0.020)

0.023
(0.016)

0.018
(0.018)

0.028
(0.014)

0.073

Pro-Safe only (iii) 0.105
(0.033)

0.116
(0.035)

0.089
(0.038)

0.099
(0.025)

0.073

Pro-Self only (iv) 0.360
(0.052)

0.326
(0.051)

0.286
(0.060)

0.331
(0.039)

0.260

Pro-Risky and Self (v) 0.035
(0.020)

0.023
(0.016)

0.036
(0.025)

0.035
(0.015)

0.145

Pro-Safe and Self (vi) 0.070
(0.027)

0.058
(0.025)

0.054
(0.030)

0.063
(0.020)

0.145

Pro-Risky OR Self (vii) 0.081
(0.029)

0.105
(0.033)

0.071
(0.034)

0.077
(0.022)

0.084

Pro-Safe OR Self (viii) 0.128
(0.036)

0.186
(0.042)

0.232
(0.056)

0.169
(0.031)

0.084

No cycles (ix) 0.163
(0.040)

0.163
(0.040)

0.214
(0.055)

0.183
(0.032)

0.052

Participants 86 86 56 142
This table shows the classification of participants according to their revealed Preferences in our analysis of data from Exley (2016)

and Ahumada et al. (2022). Standard errors in parentheses. First column shows results for all seven values of P in Exley’s data.
Columns 2 and 3 restrict to P ∈ {.05, .25, .75, .95} for comparability. Column 4 uses all available data, and column 5 simulates
random choice for seven and four probabilities respectively in proportion to study sample sizes. Statistical tests. Joint test of
equality between Exley and Ahumada type distributions (restricted to 4 probabilities): p = 0.965. Equality between rows in pooled
dataset: p

(
ii = iii

)
= 0.017, p

(
v = vi

)
= 0.285, p

(
vii = viii

)
= 0.027. Joint versus random choice (pooled dataset): p < .001. For

robustness we require at least one preference in each cycle to be stricter than in the standard analysis. We operationalize this by
requiring at least one lottery valuation to exceed the calibrated threshold by at least two choice list increments (rather than one as
in the standard analysis).
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A.5 Application to implicit racial discrimination

Data access: We accessed DeSante’s replication data through the Harvard Dataverse:

DeSante, Christopher, 2013, “Replication data for: Working Twice as Hard to Get Half as
Far: Race, Work Ethic, and America’s Deserving Poor”, https://doi.org/10.7910/DVN/
AZTWDW, Harvard Dataverse, V2, UNF:5:EEexoDfcqPKwaPVr7DS6Ow== [fileUNF]

Structural analysis. Equation (2) tells us that under a linearity assumption we can learn
about average implicit preferences by comparing average evaluations between comparisons.
We cannot identify all parameters (e.g., v(x) and the level of θ are not separately identified),
but we can identify changes such as κrace

(
θHrace − θLrace

)
, which are informative about the sign

and quantitative importance of implicit preferences.
We illustrate by writing out expressions for the mean evaluations in the “Work Ethic

concealed” treatment, to show what is identified. We set xrace = −1 for Black candidates.
For the background attribute we use subscript b for brevity, and let xb = 1 always. Recall
that we do not observe the “Children” attribute in the data, so imposed from the start that
its implicit preference equals zero.55

y (Black,White) = v (Black)− κraceθ
L
race + κbθ

L
b

y (Black,Black) = v (Black)− κraceθ
H
race + κbθ

H
b

y (White,Black) = v (White) + κraceθ
L
race + κbθ

L
b

y (White,White) = v (White) + κraceθ
H
race + κbθ

H
b

Define β0 := v (Black)− κraceθ
L
race + κbθ

L
b , and β1 := v (White) + κraceθ

L
race + κbθ

L
b . We have:

y (Black,White) = β0

y (Black,Black) = β0 − κrace(θ
H
race − θLrace) + κb(θ

H
b − θLb )

y (White,Black) = β1

y (White,White) = β1 + κrace(θ
H
race − θLrace) + κb(θ

H
b − θLb ),

from which it is readily seen that κrace(θ
H
race−θLrace) and κb(θ

H
b −θLb ) are identified. We report

estimates of 2× these quantities, which correspond to the relative increase in evaluations of
candidates with xi = 1, relative to those with xi = −1, when changing from θLi to θHi .

55This restriction is only necessary because the Children attribute is not observed, it is not critical to our
identification argument; if it was observed, we could also identify κchildren(θ

H
children − θLchildren).
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